专题论文

基于硬件预均衡电路的高速可见光通信系统

  • 迟楠 ,
  • 周盈君 ,
  • 赵嘉琦 ,
  • 黄星星
展开
  • 复旦大学通信科学与工程系, 上海 200433
迟楠,教授,研究方向为高速光通信,电子邮箱:nanchi@fudan.edu.cn

收稿日期: 2016-06-30

  修回日期: 2016-07-26

  网络出版日期: 2016-09-21

基金资助

广东省科技计划项目(2014B010119003)

High speed visible light communication based on hardware preequalization circuit

  • CHI Nan ,
  • ZHOU Yingjun ,
  • ZHAO Jiaqi ,
  • HUANG Xingxing
Expand
  • Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China

Received date: 2016-06-30

  Revised date: 2016-07-26

  Online published: 2016-09-21

摘要

可见光通信(VLC)是一种新型无线光通信技术,它将照明和通信结合起来,因此具有极其广阔的应用前景,成为近年来研究的热点。目前VLC发展的主要瓶颈在于,LED有限的调制带宽限制了VLC系统的传输速率。为解决这一问题,可见光通信系统中使用了硬件预均衡电路,设计并使用了单双级联桥T幅度均衡器,结合自适应比特功率加载正交频分复用(OFDM)技术,有效地提高了可见光通信系统的调制带宽和传输速率。

本文引用格式

迟楠 , 周盈君 , 赵嘉琦 , 黄星星 . 基于硬件预均衡电路的高速可见光通信系统[J]. 科技导报, 2016 , 34(16) : 144 -149 . DOI: 10.3981/j.issn.1000-7857.2016.16.018

Abstract

Visible light communication (VLC) is an emerging wireless optical communication technology, which combines illumination and communication. So it has a broad application prospect that makes it a research hotspot in recent years. The main challenge of VLC's development is the limited modulation bandwidth of LED, which leads to a limited transmission rate of the VLC system. To solve this problem, hardware pre-equalization circuit is used in the VLC system. We design and use single and cascaded bridged-T amplitude equalizers. By combining the orthogonal frequency division multiplexing (OFDM) technology, the VLC system's modulation bandwidth and transmission rate can be improved efficiently.

参考文献

[1] Le Minh H, O'Brien D, Faulkner G, et al. High-speed visible light com-munications using multiple-resonant equalization[J]. IEEE Photonics Technology Letters, 2008, 20(14):1243-1245.
[2] Cossu G, Khalid A M, Choudhury P, et al. 3.4 Gbit/s visible optical wireless transmission based on RGB LED[J]. Optics Express, 2012, 20(26):B501-B506.
[3] Fujimoto N, Yamamoto S. The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equaliz-ing techniques[C]//2014 The European Conference on Optical Communi-cation (ECOC). Cannes:IEEE, 2014. Doi:10.1109/ECOC.2014.6963895.
[4] Wang Y, Wang Y, Chi N, et al. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communi-cation using RGB LED and phosphor-based LED[J]. Optics Express, 2013, 21(1):1203-1208.
[5] Chi N, Wang Y, Wang Y, et al. Ultra-high-speed single red-greenblue light-emitting diode-based visible light communication system uti-lizing advanced modulation formats[J]. Chinese Optics Letters, 2014, 12(1):22-25.
[6] Cossu G, Wajahat A, Corsini R, et al. 5.6 Gb/s downlink and 1.5 Gb/s uplink optical wireless trans-mission at indoor distance (1.5 m)[C]//2014 The European Conference on Optical Communication (ECOC). Cannes:IEEE, 2014:1-3.
[7] Wang Y, Huang X, Zhang J, et al. Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS[J]. Optics Express, 2014, 22(13):15328-15334.
[8] Wang Y, Huang X, Tao L, et al. 4.5-Gb/s RGB-LED based WDM visi-ble light communication system employing CAP modulation and RLS based adaptive equalization[J]. Optics Express, 2015, 23(10):13626-13633.
[9] Yeh C H, Chow C W, Chen H Y, et al. Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practi-cal transmission distance[J]. Optics Express, 2014, 22(8):9783-9788.
[10] Yeh C H, Chow C W, Liu Y L, et al. Investigation of no analogueequalization and blue filter for 185 Mbps phosphor-LED wireless com-munication[J]. Optical and Quantum Electronics, 2015, 47(7):1991-1997.
[11] Khalid A M, Cossu G, Corsini R, et al. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation[J]. IEEE Photonics Journal, 2012, 4(5):1465-1473.
[12] Chun H, Manousiadis P, Rajbhandari S, et al. Visible light communi-cation using a blue GaN LED and fluorescent polymer color converter[J]. IEEE Photonics Technology Letters, 2014, 26(20):2035-2038.
[13] Huang X, Shi J, Li J, et al. 750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]//Optical Fiber Communication Conference. Los Angeles, California:Op-tical Society of America, 2015:Tu2G. 1.
[14] Huang X, Wang Z, Shi J, et al. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver[J]. Optics Express, 2015, 23(17):22034-22042.
[15] Huang X, Chen S, Wang Z, et al. 2.0-Gb/s visible light link based on adaptive bit Allocation OFDM of a single phosphorescent white LED[J]. IEEE Photonics Journal, 2015, 7(5):1-8.
文章导航

/