[1] Murai H, Kagawa M, Tsuji H, et al. EA modulator based optical time division multiplexing/demultiplexing techniques for 160 Gb/s optical signal transmission[J]. IEEE Journal of Selected Topics in Quantum Elec-tronics, 2007, 13(1):70-78.
[2] Mulvad H C H, Tangdiongga E, Raz O, et al. 640 Gbit/s OTDM labtransmission and 320 Gbit/s field-transmission with SOA-based clock recovery[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2008:OWS2.
[3] Schmidt-Langhorst C, Ludwig R, Hu H, et al. Single-channel 1-Tb/s transmission over 480 km DMF for future terabit ethernet systems[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2008:OTuN5.
[4] Hansen Mulvad H C, Oxenlwe L K, Galili M,et al. 1.28 Tbit/s single polarisation serial OOK optical data generation and demultiplexing[J]. Electronics Letters, 2009, 45(5):280-281.
[5] Hansen Mulvad H C, Galili M, Oxenløwe L K, et al. Demonstration of 5.1Tbit/s data capacity on a single-wavelength channel[J]. Optics Express, 2010, 18(2):1438-1443.
[6] Azana J, Oxenlowe L K, Palushani E, et al. In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s[J/O]. International Journal of Optics,[2016-06-18]. http://dx.doi.org/10.1155/2012/895281.Doi:10.1155/2012/895281.
[7] Zhu B, Peckham D, Yan M, et al. Recent progress in transmission fi-bers for capacity beyond 100-Tbit/s[C]//Optical Fiber Communication Conference. Los Angeles:Optical Society of America, 2012:OW1D. 5.
[8] Cai J X, Davidson C R, Lucero A, et al. 20 Tbit/s transmission over 6860 km with sub-nyquist channel spacing[J]. Journal of Lightwave Technology, 2012, 30(4):651-657.
[9] Ming L, Cai L, Tao J, et al. 4×193 Tbit/s 8-PSK DFT-S coherent opti-cal OFDM transmission over 2240 km SSMF[J]. Electronics Letters, 2012, 48(23):1484-1486.
[10] Rahn J T, Han S, Kuang-T W, et al. Real-time PMD tolerance mea-surements of a PIC-based 500 Gb/s coherent optical modem[J]. Jour-nal of Lightwave Technology, 2012, 30(17):2907-2912.
[11] Rene J E, Robert W T. Capacity trends and limits of optical communi-cation networks[J]. Proceedings of the IEEE, 2012, 100(5):1035-1055.
[12] Xia T J, Wellbrock G. 100 G technology development for optical trans-port networks[C]//Proceedings of Opto-Electronics and Communications Conference, Kaohsiun:IEEE, 2011:395-396.
[13] Andrekson P. High resolution optical waveform and eye diagram moni-toring[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2007:1-3.
[14] Schmidt-Langhorst C, Weber H G. Optical sampling techniques[J]. Journal of Optical and Fiber Communications Reports, 2005, 2(1):86-114.
[15] Westlund M, Sunnerud H, Karlsson M et al. Software-synchronized all-optical sampling for fiber communication systems[J] Journal of Lightwave Technology, 2005, 23(3):1088-1099.
[16] Shake I, Takara H, Kawanishi S et al. Optical signal quality monitor-ing method based on optical sampling[J]. Electronics Letters, 1998, 34(10):2152-2154.
[17] Yamada N, Ohta H, Nogiwa S. Optical sampling system using passively mode-locked fiber laser with KTP crystal[J]. IEICE Transactions on Electronics, 2003, E86C(9):1816-1823.
[18] Kawanishi S, Yamamoto T, Nakazawa M. High sensitivity waveform measurement with optical sampling using quasi-phase matched mixing in LiNbO3 waveguide[J]. Electronics Letters, 2001, 37(13):842-844.
[19] Estlund M, Andrekson P A, Sunnerud H. High-performance optical-fiber-nonlinearity-based optical waveform monitoring[J]. Journal of Lightwave Technology, 2005, 23(6):2012-2022.
[20] Jinno M, Schlager J B, Franzen D L. Optical sampling using non-degenerate four-wave mixing in a semiconductor laser amplifier[J]. Electronics Letters, 1994, 30(18):1489-1491.
[21] Diez S, Ludwig R, Schmidt C. 160 Gb/s optical sampling by gaintransparent four-wave mixing in a semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 1999, 11(11):1402-1404.
[22] Chen S M, Aderson T, Hewitt D et al. Optical performance monitoring for OFDM using low bandwidth coherent receivers[J]. Optics Express, 2012, 20(27):28724-28733.
[23] Wang M H, Sang S H. An optical performance monitoring model based on RBF-ANN trained with eye-diagram[J]. Procedia Engineer-ing, 2012, 29:53-57.
[24] Ribeiro W, Costa L, Lima M, et al. Optical performance monitoring us-ing the novel parametric asynchronous eye diagram[J]. Optics Express, 2012, 20(9):9851-9856.
[25] Souza F R D,Ribeiro M R N. An optical performance monitoring meth-od for Carrier Ethernet networks using OAM continuity check messages[J]. Photonic Network Communications, 2012, 23(1):74-82.
[26] Ciaramella E, Peracchi A, Banchi L, et al. BER estimation for perfor-mance monitoring in high-speed digital optical signals[J]. Journal of Lightwave Technology, 2012, 30(13):2117-2124.
[27] Vo T D, Schroder J, Corcoran B, et al. Photonic-chip-based ultrafast waveform analysis and optical performance monitoring[J]. IEEE Jour-nal of Selected Topics in Quantum Electronics, 2012, 18(2):834-846.
[28] Nogiwa S, Ohta H, Kawaguchi Y. Optical sampling system using a pe-riodically poled Lithium Niobate Crystal[J]. IEICE Transactions on Electronics, 1999, E85C(1):471-472.
[29] Li J, Westlund M, Sunnerud H, et al. 0.5 Tbit/s eye-diagram measure-ment by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber[J]. IEEE Photonic Technology Letters, 2004, 16(2):566-568.
[30] Schmidt C, Schubert C, Watanabe S, et al. 320 Gb/s all-optical eyediagram sampling using gain-transparent ultrafast nonlinear interferometer(GT-UNI)[C]//Proceedings of European Conference on Optical Communication. Copenhagen:IEEE, 2002:1-2.
[31] Set S Y, Goh C S, Wang D. Non-synchronous optical sampling and data-pattern recovery using a repetition-rate-tunable carbon-nanotube pulsed laser[J]. Japanese Journal of Applied Physics, 2008, 47(8S1):6809-6811.
[32] Westlund M, Sunnerud H, Karlsson M, et al. Software-synchronized all-optical sampling[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2003, 1(2):409-410.
[33] 陶然. 分数阶Fourier变换的原理与应用[M]. 北京:清华大学出版社, 2004. Tao Ran. Principle and applications of fractional Fourier transformation[M]. Beijing:Tsinghua University Press, 2004.
[34] 杨爱英, 陈晓宇. 分数阶傅里叶变换测量光纤链路色散的方法:201410752087.8[P]. 2015-03-25. Yang Aiying, Chen Xiaoyu. A method based on fractional Fourier transformation for measuring chromatic along a fiber link:201410752087.8[P]. 2015-03-25.
[35] 杨爱英, 陈晓宇. 采用分数阶傅里叶变换监测光纤链路非线性效应的方法:201510415663.4[P]. 2015-10-07. Yang Aiying, Chen Xiaoyu. A method based on fractional Fourier transformation for measuring nonlinear effect along a fiber link:201510415663.4[P]. 2015-10-07.