专题论文

高速光纤通信测量技术的发展趋势

  • 杨爱英 ,
  • 陶然 ,
  • 忻向军
展开
  • 1. 北京理工大学光电学院, 北京 100081;
    2. 北京理工大学信息与电子学院, 分数域信号与系统研究所, 北京 100081;
    3. 北京邮电大学电子工程学院, 北京 100876
杨爱英,教授,研究方向为光通信,电子信箱:yangaiying@bit.edu.cn

收稿日期: 2016-06-30

  修回日期: 2016-08-01

  网络出版日期: 2016-09-21

基金资助

国家自然科学基金重大仪器专项(61427813);国家高技术研究发展计划(863计划)项目(2013AA013401)

Technology development trend for high speed optical fiber communication measurement

  • YANG Aiying ,
  • TAO Ran ,
  • XIN Xiangjun
Expand
  • 1. School of Photoelectric, Beijing Institute of Technology, Beijing 100081, China;
    2. Institute of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
    3. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 2016-06-30

  Revised date: 2016-08-01

  Online published: 2016-09-21

摘要

光纤通信单信道速率持续向100 Gbit/s甚至更高发展,对测量仪器的带宽提出了更高的要求。由于电子瓶颈的限制,传统的电示波器极限带宽在70~90 GHz。目前能够测量100 Gbit/s光通信信号的电示波器技术难度和成本越来越高。为了突破电子瓶颈的限制,需要采用新的采样机理对超高速光通信信号或超宽带光信号进行测量。介绍了光域采样的基本原理和相应的光采样示波器及光采样示波器研发的进展。随着信道速率的不断提高,光纤链路的物理损伤对信号的影响越来越显著,如何监测光纤链路的物理损伤成为超高速光通信网需要解决的问题。基于对光物理层损伤的研究,提出了采用分数阶傅里叶变换测量光纤链路色散和非线性效应的方法,并对高速光纤通信链路的测量技术发展作了展望。

本文引用格式

杨爱英 , 陶然 , 忻向军 . 高速光纤通信测量技术的发展趋势[J]. 科技导报, 2016 , 34(16) : 154 -158 . DOI: 10.3981/j.issn.1000-7857.2016.16.020

Abstract

Single channel rate for optical fiber communication has been up to 100 Gbit or even higher, thus a higher and higher bandwidth of the measuring instrument is required. Due to the limitation of electronic bottleneck, the bandwidth limit is 70~90 GHz. At present, difficulty and cost for an electric oscilloscope to be able to measure 100 Gbit/s optical communication signals are increasing. In order to break through the limitation of electronic bottleneck, some new sampling mechanism is needed to measure the ultra high speed optical communication signal or the ultra wide band optical signal. This paper introduces the basic principle of optical field sampling and the corresponding optical sampling oscilloscope that has the advantages of high time precision and ultra wide band measurement. Also introduced are the development progresses of optical sampling oscilloscope made by the authors' research group and foriegn counterparts. In addition, with continuous improvement on channel rate, the influence of physical damage of optical fiber link on signal is becoming more significant. Therefore, how to monitor physical damage turns to be a problem in the ultra high speed optical communication network. A method of measuring the dispersion and nonlinear effect of optical fiber link based on fractional Fourier transform is presented. In the end, the development of measurement technology for high speed optical fiber communication link is prospected.

参考文献

[1] Murai H, Kagawa M, Tsuji H, et al. EA modulator based optical time division multiplexing/demultiplexing techniques for 160 Gb/s optical signal transmission[J]. IEEE Journal of Selected Topics in Quantum Elec-tronics, 2007, 13(1):70-78.
[2] Mulvad H C H, Tangdiongga E, Raz O, et al. 640 Gbit/s OTDM labtransmission and 320 Gbit/s field-transmission with SOA-based clock recovery[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2008:OWS2.
[3] Schmidt-Langhorst C, Ludwig R, Hu H, et al. Single-channel 1-Tb/s transmission over 480 km DMF for future terabit ethernet systems[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2008:OTuN5.
[4] Hansen Mulvad H C, Oxenlwe L K, Galili M,et al. 1.28 Tbit/s single polarisation serial OOK optical data generation and demultiplexing[J]. Electronics Letters, 2009, 45(5):280-281.
[5] Hansen Mulvad H C, Galili M, Oxenløwe L K, et al. Demonstration of 5.1Tbit/s data capacity on a single-wavelength channel[J]. Optics Express, 2010, 18(2):1438-1443.
[6] Azana J, Oxenlowe L K, Palushani E, et al. In-fiber subpicosecond pulse shaping for nonlinear optical telecommunication data processing at 640 Gbit/s[J/O]. International Journal of Optics,[2016-06-18]. http://dx.doi.org/10.1155/2012/895281.Doi:10.1155/2012/895281.
[7] Zhu B, Peckham D, Yan M, et al. Recent progress in transmission fi-bers for capacity beyond 100-Tbit/s[C]//Optical Fiber Communication Conference. Los Angeles:Optical Society of America, 2012:OW1D. 5.
[8] Cai J X, Davidson C R, Lucero A, et al. 20 Tbit/s transmission over 6860 km with sub-nyquist channel spacing[J]. Journal of Lightwave Technology, 2012, 30(4):651-657.
[9] Ming L, Cai L, Tao J, et al. 4×193 Tbit/s 8-PSK DFT-S coherent opti-cal OFDM transmission over 2240 km SSMF[J]. Electronics Letters, 2012, 48(23):1484-1486.
[10] Rahn J T, Han S, Kuang-T W, et al. Real-time PMD tolerance mea-surements of a PIC-based 500 Gb/s coherent optical modem[J]. Jour-nal of Lightwave Technology, 2012, 30(17):2907-2912.
[11] Rene J E, Robert W T. Capacity trends and limits of optical communi-cation networks[J]. Proceedings of the IEEE, 2012, 100(5):1035-1055.
[12] Xia T J, Wellbrock G. 100 G technology development for optical trans-port networks[C]//Proceedings of Opto-Electronics and Communications Conference, Kaohsiun:IEEE, 2011:395-396.
[13] Andrekson P. High resolution optical waveform and eye diagram moni-toring[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2007:1-3.
[14] Schmidt-Langhorst C, Weber H G. Optical sampling techniques[J]. Journal of Optical and Fiber Communications Reports, 2005, 2(1):86-114.
[15] Westlund M, Sunnerud H, Karlsson M et al. Software-synchronized all-optical sampling for fiber communication systems[J] Journal of Lightwave Technology, 2005, 23(3):1088-1099.
[16] Shake I, Takara H, Kawanishi S et al. Optical signal quality monitor-ing method based on optical sampling[J]. Electronics Letters, 1998, 34(10):2152-2154.
[17] Yamada N, Ohta H, Nogiwa S. Optical sampling system using passively mode-locked fiber laser with KTP crystal[J]. IEICE Transactions on Electronics, 2003, E86C(9):1816-1823.
[18] Kawanishi S, Yamamoto T, Nakazawa M. High sensitivity waveform measurement with optical sampling using quasi-phase matched mixing in LiNbO3 waveguide[J]. Electronics Letters, 2001, 37(13):842-844.
[19] Estlund M, Andrekson P A, Sunnerud H. High-performance optical-fiber-nonlinearity-based optical waveform monitoring[J]. Journal of Lightwave Technology, 2005, 23(6):2012-2022.
[20] Jinno M, Schlager J B, Franzen D L. Optical sampling using non-degenerate four-wave mixing in a semiconductor laser amplifier[J]. Electronics Letters, 1994, 30(18):1489-1491.
[21] Diez S, Ludwig R, Schmidt C. 160 Gb/s optical sampling by gaintransparent four-wave mixing in a semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 1999, 11(11):1402-1404.
[22] Chen S M, Aderson T, Hewitt D et al. Optical performance monitoring for OFDM using low bandwidth coherent receivers[J]. Optics Express, 2012, 20(27):28724-28733.
[23] Wang M H, Sang S H. An optical performance monitoring model based on RBF-ANN trained with eye-diagram[J]. Procedia Engineer-ing, 2012, 29:53-57.
[24] Ribeiro W, Costa L, Lima M, et al. Optical performance monitoring us-ing the novel parametric asynchronous eye diagram[J]. Optics Express, 2012, 20(9):9851-9856.
[25] Souza F R D,Ribeiro M R N. An optical performance monitoring meth-od for Carrier Ethernet networks using OAM continuity check messages[J]. Photonic Network Communications, 2012, 23(1):74-82.
[26] Ciaramella E, Peracchi A, Banchi L, et al. BER estimation for perfor-mance monitoring in high-speed digital optical signals[J]. Journal of Lightwave Technology, 2012, 30(13):2117-2124.
[27] Vo T D, Schroder J, Corcoran B, et al. Photonic-chip-based ultrafast waveform analysis and optical performance monitoring[J]. IEEE Jour-nal of Selected Topics in Quantum Electronics, 2012, 18(2):834-846.
[28] Nogiwa S, Ohta H, Kawaguchi Y. Optical sampling system using a pe-riodically poled Lithium Niobate Crystal[J]. IEICE Transactions on Electronics, 1999, E85C(1):471-472.
[29] Li J, Westlund M, Sunnerud H, et al. 0.5 Tbit/s eye-diagram measure-ment by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber[J]. IEEE Photonic Technology Letters, 2004, 16(2):566-568.
[30] Schmidt C, Schubert C, Watanabe S, et al. 320 Gb/s all-optical eyediagram sampling using gain-transparent ultrafast nonlinear interferometer(GT-UNI)[C]//Proceedings of European Conference on Optical Communication. Copenhagen:IEEE, 2002:1-2.
[31] Set S Y, Goh C S, Wang D. Non-synchronous optical sampling and data-pattern recovery using a repetition-rate-tunable carbon-nanotube pulsed laser[J]. Japanese Journal of Applied Physics, 2008, 47(8S1):6809-6811.
[32] Westlund M, Sunnerud H, Karlsson M, et al. Software-synchronized all-optical sampling[C]//Proceedings of Optical Fiber Communication Conference, San Diego:Optical Society of America, 2003, 1(2):409-410.
[33] 陶然. 分数阶Fourier变换的原理与应用[M]. 北京:清华大学出版社, 2004. Tao Ran. Principle and applications of fractional Fourier transformation[M]. Beijing:Tsinghua University Press, 2004.
[34] 杨爱英, 陈晓宇. 分数阶傅里叶变换测量光纤链路色散的方法:201410752087.8[P]. 2015-03-25. Yang Aiying, Chen Xiaoyu. A method based on fractional Fourier transformation for measuring chromatic along a fiber link:201410752087.8[P]. 2015-03-25.
[35] 杨爱英, 陈晓宇. 采用分数阶傅里叶变换监测光纤链路非线性效应的方法:201510415663.4[P]. 2015-10-07. Yang Aiying, Chen Xiaoyu. A method based on fractional Fourier transformation for measuring nonlinear effect along a fiber link:201510415663.4[P]. 2015-10-07.
文章导航

/