专题论文

纳米光催化技术在大气污染治理中的应用

  • 曹军骥 ,
  • 黄宇
展开
  • 中国科学院地球环境研究所, 中国科学院气溶胶化学与物理重点实验室, 西安 710061
曹军骥,研究员,研究方向为大气化学及大气污染控制,电子信箱:cao@loess.llqg.ac.cn

收稿日期: 2016-08-15

  修回日期: 2016-09-02

  网络出版日期: 2016-10-15

基金资助

中国科学院国际合作局对外合作重点项目(GJHZ1543)

Applications and prospects of nanomaterial-based photocatalysis technology in atmospheric air purification

  • CAO Junji ,
  • HUANG Yu
Expand
  • Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

Received date: 2016-08-15

  Revised date: 2016-09-02

  Online published: 2016-10-15

摘要

作为当今的研究热点,纳米光催化技术在大气环境治理方面具有巨大的发展潜力。关于纳米光催化功能材料的研制和应用技术开发,国内外科学工作者和产业研发者一直在寻找新的突破口。一方面,亟需规模化制备出具有高效催化性能的纳米光催化剂,高效降解NOx、VOCs、HCHO等污染气体;另一方面,亟待开发以纳米光催化技术为核心、多技术集成联用的、可适用于不同空间尺度的空气净化器件和装置,建立并推广空气净化新技术、新设备,最终实现空气净化产业的可持续发展。本文提出了纳米光催化技术在大气污染控制过程中面临的新挑战,展望了未来的发展。

本文引用格式

曹军骥 , 黄宇 . 纳米光催化技术在大气污染治理中的应用[J]. 科技导报, 2016 , 34(17) : 64 -71 . DOI: 10.3981/j.issn.1000-7857.2016.17.009

Abstract

Nanomaterial-based photocatalysis, a promising strategy for atmospheric air purification, has attracted increasingly more attention in recent years. Scientists are anticipating a new breach to prepare functional nanomaterials in large-scale for eliminating gas pollutants such as NOx, VOCs and HCHO with high efficiency. Moreover, the development and fabrication of air purification units and devices based on photocatalysis technology are highly emphasized. These efforts can contribute to the sustainable development of the wholeindustry. In this study, the new challenges and prospects for nanomaterial-based photocatalysis technology are discussed in detail.

参考文献

[1] Atkinson R,Atmospheric chemistry of VOCs and NOx[J].Atmospheric Environment,2000,34(12-14):2063-2101.
[2] Barletta B,Meinardi S,Rowland F S,et al.Volatile organic compounds in 43 Chinese cities[J].Atmospheric Environment,2005,39(32):5979-5990.
[3] Shao M,Lu S,Liu Y,et al.Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J].Journal of Geophysical Research Atmospheres,2009,114(7):1291-1298.
[4] Hatfield M L,Hartz K E H,Secondary organic aerosol from biogenic volatile organic compound mixtures[J].Atmospheric Environment,2011,45(13):2211-2219.
[5] Huang R J,Zhang Y,Bozzetti C,et al.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-22.
[6] Hoffmann M R,Martin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95(1):69-96.
[7] Schneider J,Matsuoka M,Takeuchi M,et al.Understanding TiO2 photocatalysis:mechanisms and materials[J].Chemical Reviews,2014,114(19):9919-9986.
[8] Pomeroy R D.De-odoring of gas streams by the use of micro-biological growths:2793096[P/OL].1953-05-10[2016-08-29].http://www.freepatentsonline.com/2793096.html.
[9] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[10] Frank S N,Bard A J.Semiconductor electrodes.12.photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes[J].Journal of the American Chemical Society,1977,99(14):4667-4675.
[11] Frank S N,Bard A J,Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J].Journal of the American Chemical Society,1977,99(1):303-304.
[12] Carey J,Lawrence J,Tosine H.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J].Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701.
[13] Linsebigler A L,Lu G,Yates J T.Photocatalysis on TiO2 surfaces:Principles,mechanisms,and selected results[J].Chemical Reviews,1995,95(3):735.
[14] 于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展,2009,21(2/3):406-419.Yu Hongtao,Quan Xie.Research progress of nano heterojuction photocatalytic materials in environmental pollution control[J].Progress in Chemistry,2009,21(2/3):406-419.
[15] Xia Y,Yang P,Sun Y,et al.One-dimensional nanostructures:synthesis,characterization,and applications[J].Advanced Materials,2003,34(22):353-389.
[16] Tong H,Ouyang S,Bi Y,et al.Nano-photocatalytic materials:possibilities and challenges[J].Advanced Materials,2012,24(2):229-251.
[17] Dvoranova D,Brezova V,Mazur M,et al.Investigations of metal-doped titanium dioxide photocatalysts[J].Applied Catalysis B:Environmental,2002,37(2):91-105.
[18] Liu J,Li H,Zong L,et al.Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles[J].Journal of Nanoparticle Research,2015,17:114.
[19] Wang Y,Feng C,Zhang M,et al.Visible light active N-doped TiO2 prepared from different precursors:Origin of the visible light absorption and photoactivity[J].Applied Catalysis B:Environmental,2011,104(3):268-274.
[20] Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-271.
[21] Huang Y,Ho W,Lee S C,et al.Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx[J].Langmuir,2008,24(7):3510-3516.
[22] YuJ C,Yu J,Ho W,et al.Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J].Cheminform,2002,33(47):12-12.
[23] Chen X,Li Y,Pan X,et al.Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts[J].Nature Communications,2016,7:12273.
[24] Liu Y,Wang Z,Huang B,et al.Preparation,electronic structure,and photocatalytic properties of Bi2O2CO3 nanosheet[J].Applied Surface Science,2010,257(1):172-175.
[25] Zhang L,Wang H,Chen Z,et al.Bi2WO6 micro/nano-structures:Synthesis,modifications and visible-light-driven photocatalytic applications[J].Applied Catalysis B:Environmental,2011,106(1/2):1-13.
[26] Cheng H,Huang B,Dai Y.Engineering BiOX (X=Cl,Br,I) nanostructures for highly efficient photocatalytic applications[J].Nanoscale,2014,6(4):2009-2026.
[27] Ong W J,Tan L L,Ng Y H,et al.Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability[J].Chemical Reviews,2016,116(12):7159-7329.
[28] Wang Z,Huang Y,HoW,et al.Fabrication of Bi2O2CO3/g-C3N4heterojunctions for efficiently photocatalytic NO in air removal:In-situ self-sacrificial synthesis,characterizations and mechanistic study[J].Applied Catalysis B:Environmental,2016,199:123-133.
[29] Ai Z,Ho W,Lee S,et al.Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J].Environmental Science&Technology,2009,43(11):4143-50.
[30] Li G,Zhang D,Yu J C,et al.An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide[J].Environmental Science&Technology,2010,44(11):4276-4281.
[31] Li Y,Wang Y,Huang Y,et al.Controllable synthesis of phosphate-modified BiPO4 nanorods with high photocatalytic activity:Surface hydroxyl groups concentrations effects[J].RSC Advances,2015,5(121):99712-99721.
[32] Huang Y,Gao Y,Zhang Q,et al.Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis:Characterization,mechanistic and photocatalytic NOx removal studies[J].Applied Catalysis A:General,2016,515:170-178.
[33] Huang Y,Wang W,Zhang Q,et al.In situ fabrication of α-Bi2O3/(BiO)2CO3 nanoplateheterojunctions with tunable optical property and photocatalytic activity[J].Scientific Reports,2016,6:23435.
[34] Zhang Q,Huang Y,Xu L,et al.Visible-light-activeplasmonic Ag-SrTiO3 nanocomposites for the degradation of NO in air with high selectivity[J].ACS Applied Materials&Interfaces,2016,8:4165-4174.
[35] Wu J C S,ChengY T,In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation[J].Journal of Catalysis,2006,237(2):393-404.
[36] Ge S,Zhang L.Efficient visible light driven photocatalytic removal of RhB and NO with low temperature synthesized In (OH)xSy hollow nanocubes:A comparative study[J].Environmental Science&Technology,2011,45(7):3027-3033.
[37] Maggos T,Bartzis J G,Liakou M,et al.Photocatalytic degradation of NOx gases using TiO2-containing paint:A real scale study[J].Journal of Hazardous Materials 2007,146(3):668-673.
[38] Guerrini G L,Photocatalytic performances in a city tunnel in Rome:NOx monitoring results[J].Construction&Building Materials,2012,27(1):165-175.
[39] Folli A,Strøm M,Madsen T P,et al.Field study of air purifying paving elements containing TiO2[J].Atmospheric Environment,2015,107:44-51.
[40] Negishi N,Sano T.Photocatalytic solar tower reactor for the elimination of a low concentration of VOCs[J].Molecules,2014,19(10):16624-16639.
[41] 谭忆秋,李洛克,魏鹏,等.可降解汽车尾气材料在沥青路面中的应用性能评价[J].中国公路学报,2010,23(6):21-27.Tan Yiqiu,Li Luoke,Wei Peng,et al.Performance evaluation of degradable automobile exhaust materials applied in asphalt pavement[J].China Journal of Highway and Transport,2010,23(6):21-27.
[42] 戴智强,陈爱平,古政荣,等.室内空气中三氯乙烯在TiO2/AC上的光催化氧化动力[J].化学反应工程与工艺,2001,17(4):297.Dai Zhiqiang,Chen Aiping,Gu Zhengrong,et al.Photocatalyticoxidation power on TiO2/AC of trichloroethylene in indoor air[J].Chemical Reaction Engineering and Technology,2001,17(4):297.
[43] 中国预防医学研究院环境卫生与卫生工程研究所.纳米光催化涂料对空气中有害物质消除效果检测报告[R].北京:中国预防医学研究院,2001.Institute of Environmental Sanitation and Health Engineering,Chinese Academy of Preventive Medicine.Detection report of the elimination effect of nano photocatalytic coatings on the harmful substances in the air[R].Beijing:Chinese Academy of Preventive Medicine,2001.
[44] 李云路,李建军,孙国萍.生物滴滤池中废气有机物的生物降解[J].微生物学通报,2005,32(2):119-124.Li Yunlu,Li Jianjun,Sun Guoping.Biodegradation of waste gas in a biological aerated filter[J].Microbiology China,2005,32(2):119-124.
[45] 杨慎文,袁健,马兆丽,等.用生物法技术处理废气的探讨[J].环境科学导刊,2010,29(A01):64-66.Yang Shenwen,Yuan Jian,Ma Zhaoli,et al.Discussion on treatment of waste gas by biological technique[J].EnvironmentalScienceSurvey,2010,29(A01):64-66.
文章导航

/