专题论文

电磁超材料研究进展

  • 梅中磊 ,
  • 张黎 ,
  • 崔铁军
展开
  • 1. 兰州大学信息科学与工程学院, 兰州 730000;
    2. 东南大学信息科学工程学院, 毫米波国家重点实验室, 南京 210096
梅中磊,教授,研究方向为新型人工电磁材料,电子信箱:meizl@lzu.edu.cn

收稿日期: 2015-12-31

  修回日期: 2016-04-16

  网络出版日期: 2016-10-21

基金资助

国家自然科学基金项目(61571117,61171024,61171026,61138001,61302018,61401089,61522106);高等学校学科创新机智计划项目(111-2-05);中央高校基本科研业务费项目(LZUJBKY-2015-k07,LZUJBKY-2014-43)

Recent advances on metamaterials

  • MEI Zhonglei ,
  • ZHANG Li ,
  • CUI Tiejun
Expand
  • 1. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000 China;
    2. State Key Laboratory of Millimeter Waves;School of Information Science and Engineering, Southeast University, Nanjing 210096, China

Received date: 2015-12-31

  Revised date: 2016-04-16

  Online published: 2016-10-21

摘要

简介了电磁超材料的定义、性质和分类,综述了电磁超材料研究的常用等效媒质理论、电磁参数提取方法、电磁超材料的具体实现方式、二维电磁表面及其机理、电磁超材料的典型应用等研究进展,展望了电磁超材料的发展趋势。

本文引用格式

梅中磊 , 张黎 , 崔铁军 . 电磁超材料研究进展[J]. 科技导报, 2016 , 34(18) : 27 -39 . DOI: 10.3981/j.issn.1000-7857.2016.18.002

Abstract

In this paper the current research and development of electromagnetic metamaterials are reviewed. Firstly, the definition, properties and classification of metamaterials are given. Secondly, commonly used effective medium theories are summarized, including Clausius-Mossoti equation, Maxwell-Garnett equation and its generalization, Bruggemann effective-medium expression, and the Polder-van Santen formula. Then, two retrieval methods for characterising electromagnetic parameters of metamaterials are presented, i.e., the method based on scattering parameters and another based on waveguide measurement. As for possible implementations of metamaterials, six types are demonstrated in the review, namely PCB based metamaterial, graphene based metamaterial, dc metamaterial, transmission-line based metamaterial, metamaterial using dielectric resonators, and anisotropic metamaterials using isotropic layered materials. Moreover, a twodimensional metamaterial, i.e. metasurface, and its working mechanism are also explained. More importantly, several typical applications of metamaterials are illustrated, which are the ultra-thin carpet cloak, microwave gateway, conformal surface plasmon polaritons, digital and programmable metasurface, dc cloak, and graphene based ultra-thin cloak, Luneburg lens, etc. Finally, future development of metamaterials is predicted.

参考文献

[1] Veselago V G. The electrodynamics of substances with simultaneous negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4):509-514.
[2] Shelby R A, Smith D R, and Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[3] Xi S, Chen H S, Jiang T, et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial[J]. Physical Review Letters, 2009, 103(19):194801.
[4] Galyamin S N, Tyukhtin A V, Kanareykin A, et al. Reversed Cherenkov-transition radiation by a charge crossing a left-handed medium boundary[J]. Physical Review Letters, 2009, 103(19):194802.
[5] Lakhtakia A. Positive and negative Goos-Hanchen shifts and negative phase-velocity mediums (alias left-handed materials)[J]. International Journal of Electronics and Communications, 2003, 58(3):229-231.
[6] Cui T J, Lin X Q, Cheng Q, et al. Experiments on evanescent-wave amplification and transmission using metamaterial structures[J]. Physical Review B, 2006, 73(24):245119.
[7] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969.
[8] Sihvola A, Tretyakov S, and Baas D B. Metamaterials with extreme material parameters[J]. Journal of Communications Technology & Electronics, 2007, 52(9):986-990.
[9] Alù A, Engheta N, Erentok A, and Ziolkowski R W. Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications[J]. IEEE Antennas and Propagation Magazine, 2007, 49(1):23-36.
[10] Mei Z L, Cui T J. Experimental realization of a broadband bend structure using gradient index metamaterials[J]. Optics Express, 2009, 17(20):18354-18363.
[11] Choy T C. Effective medium theory:principles and applications[M]. Oxford University Press, 1999.
[12] Guven K, Saenz E, Gonzalo R, et al. Electromagnetic cloaking with canonical spiral inclusions[J]. New Journal of Physics, 2008, 10(11):1005-1008.
[13] 许福永, 赵克玉. 电磁场与电磁波[M]. 北京:科学出版社, 2005:30-31. Xu Fuyong, Zhao Keyu. Electromagnetic field and electromagnetic wave[M]. Beijing:Science Press, 2005:30-31.
[14] Koledintseva M Y, Dubroff R E, and Schwartz R W. A Maxwell-Garnett model for dielectric mixtures containing conducting particles at optical frequencies[J]. Progress in Electromagnetics Research, 2006, 63:223-242.
[15] Landau L D, Lifshitz E M, and Pitaevskii L P. Electrodynamics of continuous media[M]. New York:Pergamon Press, 1984:24.
[16] Smith D R, Schultz S, Markos P, and et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2001, 65(19):195104.
[17] Chen X D, Grzegorczyk T M, Wu B L, et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 70(2):811-811.
[18] Chen X D, Wu B L, Kong J A, et al. Retrieval of the effective constitutive parameters of bianisotropic metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(2):100-119.
[19] Mei Z L, Bai J, and Cui T J. Gradient index metamaterials realized by drilling hole arrays[J]. Journal of Physics D Applied Physics, 2010, 43(5):055404.
[20] Yang X M, Zhou X Y, Cheng Q, et al. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letters, 2010, 35(6):808-810.
[21] Chen H S, Zhang J J, Bai Y, et al. Experimental retrieval of the effective parameters of metamaterials based on a waveguide method[J]. Optics Express, 2007, 14(26):12944.
[22] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187.
[23] Bai G D, Yang F, Jiang W X, et al. Realization of a broadband electromagnetic gateway at microwave frequencies[J]. Applied Physics Letters, 2015, 107(15):2075-2083.
[24] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308-1308.
[25] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6):064302.
[26] Feng Y J, Teng X H, Chen Y, et al. Electromagnetic wave propagation in anisotropic metamaterials created by a set of periodic inductor-capacitor circuit networks[J]. Physical Review B, 2005, 72(24):245107.
[27] Grbic A and Eleftheriades G V. Periodic analysis of a 2-D negative refractive index transmission line structure[J]. IEEE Transactions on Antennas & Propagation, 2003, 51(10):2604-2611.
[28] Ahmadi A and Mosallaei H. Physical configuration and performance modeling of all-dielectric metamaterials[J]. Physical Review B Condensed Matter, 2008, 77(4):5104.
[29] Schuller J A, Zia R, Taubner T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 2007, 99(10):107401.
[30] Levy U, Abashin M, Ikeda K, et al. Inhomogenous dielectric metamaterials with space-variant polarizability[J]. Physical Review Letters, 2007, 98(24):727-734.
[31] Wheeler M S, Aitchison J S and Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies[J]. Physical Review B, 2005, 72(19):193103.
[32] Lagarkov A N and Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions[J]. Physical Review B Condensed Matter, 1996, 53(10):6318-6336.
[33] Chen H Y and Chan C T. Electromagnetic wave manipulation using layered systems[J]. Physical Review B, 2008, 78(5):054204.
[34] Xiao D and Johnson H T. Approximate optical cloaking in an axisymmetric silicon photonic crystal structure[J]. Optics Letters, 2008, 33(8):860-862.
[35] Pendry J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700):1353-1355.
[36] Edwards B, Alù A, Silveirinha M G, et al. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials[J]. Physical Review Letters, 2009, 103(15):153901.
[37] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:Generalized Laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
[38] Pendry J B, Schurig D, and Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[39] Zhang B L, Luo Y, Liu X G, et al. Macroscopic invisibility cloak for visible light[J]. Physical Review Letters, 2010, 106(3):426-432.
[40] Zhang J, Mei Z L, Zhang W R, et al. An ultrathin directional carpet cloak based on Generalized Snell's law[J]. Applied Physics Letters, 2013, 103(15):151115.
[41] Estakhri N M and Alù A. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13:1775-1778.
[42] Hsu L Y, Lepetit T, and Kanté B. Extremely thin dielectric metasurface for carpet cloaking[J]. Progress in Electromagnetics Research, 2015, 152.
[43] Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254):1310-1314.
[44] Luo X D, Yang T, Gu Y W, et al. Conceal an entrance by means of superscatterer[J]. Applied Physics Letters, 2009, 94(22):223513.
[45] Chen H Y, Chan C T, Liu S, et al. A simple route to a tunable electromagnetic gateway[J]. New Journal of Physics, 2009, 11(8):1-13.
[46] Li C, Meng X K, Liu X, et al. Experimental realization of a circuitbased broadband illusion-optics analogue[J]. Physical Review Letters, 2010, 105(23):3425-3426.
[47] Lin X Q, Jiang Y, Jin J Y, et al. Understand and realize an "invisible gateway" in a classical way[J]. Progress in Electromagnetics Research, 2013, 141:739-749.
[48] Hayashi S and Okamoto T. Plasmonics:visit the past to know the future[J]. Journal of Physics D Applied Physics, 2012, 45(43):433001-433024(24).
[49] Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5):874-881.
[50] Pendry J B, Martín-Moreno L, and García-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685):847-848.
[51] Shen X P, Cui T J, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1):40-45.
[52] Kumar G, Pandey S, Cui A, et al. Planar plasmonic terahertz waveguides based on periodically corrugated metal films[J]. New Journal of Physics, 2011, 13(11):1404-1408.
[53] Navarro-Cía M, Beruete M, Agrafiotis S, et al. Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms[J]. Optics Express, 2009, 17(20):18184-18195.
[54] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Science & Applications, 2014, 3(10):e218.
[55] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.
[56] Yang F, Mei Z L, and Jin T Y, et al. dc electric invisibility cloak[J]. Physical Review Letters, 2012, 109(5):053902.
[57] Alù A, and Engheta N. Achieving transparency with plasmonic and metamaterial coatings[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(1):016623.
[58] Chen P Y and Alù A. Atomically thin surface cloak using graphene monolayers[J]. Acs Nano, 2011, 5(7):5855-5863.
[59] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035):1291-1294.
文章导航

/