[1] Veselago V G. The electrodynamics of substances with simultaneous negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4):509-514.
[2] Shelby R A, Smith D R, and Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[3] Xi S, Chen H S, Jiang T, et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial[J]. Physical Review Letters, 2009, 103(19):194801.
[4] Galyamin S N, Tyukhtin A V, Kanareykin A, et al. Reversed Cherenkov-transition radiation by a charge crossing a left-handed medium boundary[J]. Physical Review Letters, 2009, 103(19):194802.
[5] Lakhtakia A. Positive and negative Goos-Hanchen shifts and negative phase-velocity mediums (alias left-handed materials)[J]. International Journal of Electronics and Communications, 2003, 58(3):229-231.
[6] Cui T J, Lin X Q, Cheng Q, et al. Experiments on evanescent-wave amplification and transmission using metamaterial structures[J]. Physical Review B, 2006, 73(24):245119.
[7] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969.
[8] Sihvola A, Tretyakov S, and Baas D B. Metamaterials with extreme material parameters[J]. Journal of Communications Technology & Electronics, 2007, 52(9):986-990.
[9] Alù A, Engheta N, Erentok A, and Ziolkowski R W. Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications[J]. IEEE Antennas and Propagation Magazine, 2007, 49(1):23-36.
[10] Mei Z L, Cui T J. Experimental realization of a broadband bend structure using gradient index metamaterials[J]. Optics Express, 2009, 17(20):18354-18363.
[11] Choy T C. Effective medium theory:principles and applications[M]. Oxford University Press, 1999.
[12] Guven K, Saenz E, Gonzalo R, et al. Electromagnetic cloaking with canonical spiral inclusions[J]. New Journal of Physics, 2008, 10(11):1005-1008.
[13] 许福永, 赵克玉. 电磁场与电磁波[M]. 北京:科学出版社, 2005:30-31. Xu Fuyong, Zhao Keyu. Electromagnetic field and electromagnetic wave[M]. Beijing:Science Press, 2005:30-31.
[14] Koledintseva M Y, Dubroff R E, and Schwartz R W. A Maxwell-Garnett model for dielectric mixtures containing conducting particles at optical frequencies[J]. Progress in Electromagnetics Research, 2006, 63:223-242.
[15] Landau L D, Lifshitz E M, and Pitaevskii L P. Electrodynamics of continuous media[M]. New York:Pergamon Press, 1984:24.
[16] Smith D R, Schultz S, Markos P, and et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2001, 65(19):195104.
[17] Chen X D, Grzegorczyk T M, Wu B L, et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 70(2):811-811.
[18] Chen X D, Wu B L, Kong J A, et al. Retrieval of the effective constitutive parameters of bianisotropic metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(2):100-119.
[19] Mei Z L, Bai J, and Cui T J. Gradient index metamaterials realized by drilling hole arrays[J]. Journal of Physics D Applied Physics, 2010, 43(5):055404.
[20] Yang X M, Zhou X Y, Cheng Q, et al. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letters, 2010, 35(6):808-810.
[21] Chen H S, Zhang J J, Bai Y, et al. Experimental retrieval of the effective parameters of metamaterials based on a waveguide method[J]. Optics Express, 2007, 14(26):12944.
[22] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187.
[23] Bai G D, Yang F, Jiang W X, et al. Realization of a broadband electromagnetic gateway at microwave frequencies[J]. Applied Physics Letters, 2015, 107(15):2075-2083.
[24] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308-1308.
[25] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6):064302.
[26] Feng Y J, Teng X H, Chen Y, et al. Electromagnetic wave propagation in anisotropic metamaterials created by a set of periodic inductor-capacitor circuit networks[J]. Physical Review B, 2005, 72(24):245107.
[27] Grbic A and Eleftheriades G V. Periodic analysis of a 2-D negative refractive index transmission line structure[J]. IEEE Transactions on Antennas & Propagation, 2003, 51(10):2604-2611.
[28] Ahmadi A and Mosallaei H. Physical configuration and performance modeling of all-dielectric metamaterials[J]. Physical Review B Condensed Matter, 2008, 77(4):5104.
[29] Schuller J A, Zia R, Taubner T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 2007, 99(10):107401.
[30] Levy U, Abashin M, Ikeda K, et al. Inhomogenous dielectric metamaterials with space-variant polarizability[J]. Physical Review Letters, 2007, 98(24):727-734.
[31] Wheeler M S, Aitchison J S and Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies[J]. Physical Review B, 2005, 72(19):193103.
[32] Lagarkov A N and Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions[J]. Physical Review B Condensed Matter, 1996, 53(10):6318-6336.
[33] Chen H Y and Chan C T. Electromagnetic wave manipulation using layered systems[J]. Physical Review B, 2008, 78(5):054204.
[34] Xiao D and Johnson H T. Approximate optical cloaking in an axisymmetric silicon photonic crystal structure[J]. Optics Letters, 2008, 33(8):860-862.
[35] Pendry J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700):1353-1355.
[36] Edwards B, Alù A, Silveirinha M G, et al. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials[J]. Physical Review Letters, 2009, 103(15):153901.
[37] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:Generalized Laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
[38] Pendry J B, Schurig D, and Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[39] Zhang B L, Luo Y, Liu X G, et al. Macroscopic invisibility cloak for visible light[J]. Physical Review Letters, 2010, 106(3):426-432.
[40] Zhang J, Mei Z L, Zhang W R, et al. An ultrathin directional carpet cloak based on Generalized Snell's law[J]. Applied Physics Letters, 2013, 103(15):151115.
[41] Estakhri N M and Alù A. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13:1775-1778.
[42] Hsu L Y, Lepetit T, and Kanté B. Extremely thin dielectric metasurface for carpet cloaking[J]. Progress in Electromagnetics Research, 2015, 152.
[43] Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254):1310-1314.
[44] Luo X D, Yang T, Gu Y W, et al. Conceal an entrance by means of superscatterer[J]. Applied Physics Letters, 2009, 94(22):223513.
[45] Chen H Y, Chan C T, Liu S, et al. A simple route to a tunable electromagnetic gateway[J]. New Journal of Physics, 2009, 11(8):1-13.
[46] Li C, Meng X K, Liu X, et al. Experimental realization of a circuitbased broadband illusion-optics analogue[J]. Physical Review Letters, 2010, 105(23):3425-3426.
[47] Lin X Q, Jiang Y, Jin J Y, et al. Understand and realize an "invisible gateway" in a classical way[J]. Progress in Electromagnetics Research, 2013, 141:739-749.
[48] Hayashi S and Okamoto T. Plasmonics:visit the past to know the future[J]. Journal of Physics D Applied Physics, 2012, 45(43):433001-433024(24).
[49] Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5):874-881.
[50] Pendry J B, Martín-Moreno L, and García-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685):847-848.
[51] Shen X P, Cui T J, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1):40-45.
[52] Kumar G, Pandey S, Cui A, et al. Planar plasmonic terahertz waveguides based on periodically corrugated metal films[J]. New Journal of Physics, 2011, 13(11):1404-1408.
[53] Navarro-Cía M, Beruete M, Agrafiotis S, et al. Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms[J]. Optics Express, 2009, 17(20):18184-18195.
[54] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Science & Applications, 2014, 3(10):e218.
[55] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.
[56] Yang F, Mei Z L, and Jin T Y, et al. dc electric invisibility cloak[J]. Physical Review Letters, 2012, 109(5):053902.
[57] Alù A, and Engheta N. Achieving transparency with plasmonic and metamaterial coatings[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(1):016623.
[58] Chen P Y and Alù A. Atomically thin surface cloak using graphene monolayers[J]. Acs Nano, 2011, 5(7):5855-5863.
[59] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035):1291-1294.