专题论文

先微波可调谐超材料吸波体研究进展

  • 周倩 ,
  • 殷小玮 ,
  • 张立同 ,
  • 成来飞
展开
  • 西北工业大学超高温结构复合材料重点实验室, 西安 710072
周倩,博士研究生,研究方向为吸波超材料,电子信箱:qianzhou@mail.nwpu.edu.cn

收稿日期: 2016-04-11

  修回日期: 2016-04-20

  网络出版日期: 2016-10-21

基金资助

国家自然科学基金项目(51332004)

Research progress of microwave tunable metamaterial absorber

  • ZHOU Qian ,
  • YIN Xiaowei ,
  • ZHANG Litong ,
  • CHENG Laifei
Expand
  • Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-04-11

  Revised date: 2016-04-20

  Online published: 2016-10-21

摘要

随着电磁波干扰防护技术与隐身技术的的发展,吸波材料已成为科学研究的重要课题。介绍了材料的吸波原理、吸波材料的分类及其特征,总结了超材料吸波体在微波频段的应用研究现状,综述了超材料作为可调谐吸波体的研究进展,展望了超材料在可调谐吸波体中的研究趋势。

本文引用格式

周倩 , 殷小玮 , 张立同 , 成来飞 . 先微波可调谐超材料吸波体研究进展[J]. 科技导报, 2016 , 34(18) : 40 -46 . DOI: 10.3981/j.issn.1000-7857.2016.18.003

Abstract

With the development of electromagnetic interference protection technique and military stealth technique, absorbing materials have become an important subject of scientific research. In this paper, the principle of metamaterial absorber as well as the classification of absorbing materials is introduced, and the progress of microwave metamaterial absorbers designed for microwave frequencies is outlined. Particularly, theoretic and experimental studies on tunable metamaterial absorbers are summarized, and the development trend of metamaterial in tunable absorbers is prospected.

参考文献

[1] De Rosa I M, A Dinescu, F Sarasini, et al. Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyestercomposites containing nickel-coated carbon fibers[J]. Composites Science and Technology, 2010, 70(1):102-109.
[2] Huynen I, Quievy N, Bailly C, et al. Multifunctional hybrids for electromagnetic absorption[J]. Acta Materialia, 2011, 59(8):3255-3266.
[3] Kong L B, Li Z W, Liu L, et al. Recent progress in some composite materials and structures for specific electromagnetic applications[J]. International Materials Reviews, 2013, 58(4):203-259.
[4] Yin X W, Kong L, Zhang L T, et al. Electromagnetic properties of Si-C-N based ceramics and composites[J]. International Materials Reviews, 2014, 59(6):326-355.
[5] Smith D R, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003, 90(7):077405.
[6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[7] Zheludev N I. The Road Ahead for Metamaterials[J]. Science, 2010, 328(5978):582-583.
[8] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[9] Chen H S, Zheng B, Shen L, et al. Ray-optics cloaking devices for large objects in incoherent natural light[J]. Nature Communications, 2013, 4:2562.
[10] Zhang S, Zhou J F, Park Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3:942.
[11] Landy N I, Sajuyigbe s, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402.
[12] Li S J, Gao J, Cao X Y, et al. Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber[J]. Applied Physics Letters, 2015, 106(18):181103.
[13] Su Z X, Yin J B, Zhao X P. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures[J]. Optics Express, 2015, 23(2):1679-1690.
[14] Avitzour Y, Urzhumov Y A, Shvets G. Wide-angle infrared absorber based on a negative-index plasmonic metamateria[J]. Physical Review B, 2009, 79(4):045131.
[15] Liu Z Q, Liu X S, Huang S, et al. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic filmformation[J]. Acs Applied Materials & Interfaces, 2015, 7(8):4962-4968.
[16] 庞建峰, 马喜君, 谢兴勇. 电磁吸波材料的研究进展[J]. 电子元件与材料, 2015, 34(2):7-16. Pang Jianfeng, Ma Xijun, Xie Xingyong. Research progress of microwave absorption materials[J]. Eelectronic Components and Materials, 2015, 34(2):7-16.
[17] Miles P A, Westphal W B, Vonhippel A. Dielectric spectroscopy of ferromagnetic semiconductors[J]. Reviews of Modern Physics 1957, 29(3):279-307.
[18] Kong L, Yin X W, Ye F, et al. Electromagnetic wave absorption properties of ZnO-Based materials modified with ZnAl2O4 nanograins[J]. Journal of Physical Chemistry C, 2013, 117(5):2135-2146.
[19] 陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报, 2011, 26(5):449-457. Chen Xuegang, Ye Ying, Cheng Jipeng. Recent progress in electromagnetic wave absorbers[J]. Journal of Inorganic Materials, 2011, 26(5):449-457.
[20] Zhu Y F, Zhang L, Natsuki T, et al. Synthesis of hollow poly(anilineco-pyrrole)-Fe3O4 composite nanospheres and their microwave absorption behavior[J]. Synthetic Metals, 2012, 162(3-4):337-343.
[21] Belaabed B, Wojkiewicz J L, Lamouri S, et al. Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties[J]. Journal of Alloys and Compounds, 2012, 527:137-144.
[22] Wan F, Luo F, Wang H Y, et al. Effects of carbon black (CB) and alumina oxide on the electromagnetic- and microwave-absorption properties of SiC fiber/aluminum phosphate matrix composites[J]. Ceramics International, 2014, 40(10):15849-15857.
[23] Alamri H, Low I M. Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites[J]. Polymer Testing, 2012, 31(6):810-818.
[24] Wen B, Zhao J J, Duan Y P, et al. Electromagnetic wave absorption properties of carbon powder from catalysed carbon black in X and Ku bands[J]. Journal of Physics D-Applied Physics, 2006, 39(9):1960-1962.
[25] Liu Y, Liu X, Wang X. Synthesis and microwave absorption properties of Ni-Zn-Mn spinel ferrites[J]. Advances in Applied Ceramics, 2015, 114(2):82-86.
[26] Ali-Sharbati, Amiri G R, Mousarezaei R. Structural, magnetic, and microwave-absorption properties of nanocrystalline Ca(MnSn)(x) Fe12-2x O19 ferrites[J]. Journal of Electronic Materials, 2015, 44(2):715-719.
[27] Yu M, Yang P A, Fu J, et al. Flower-like carbonyl iron powder modified by nanoflakes:Preparation and microwave absorption properties[J]. Applied Physics Letters, 2015, 106(16):161904.
[28] Li R, Zhou W C, Zhou Y Y, et al. Electromagnetic and microwave absorption properties and antioxidant properties of Co-P coating on carbonyl iron[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2015, 9(1-2):231-233.
[29] Cui C Y, Zhou P P, Wu N D, et al. Microwave absorption properties of Ag3PO4 nanoparticles-modified NI@C nanocapsules[J]. Materials Letters,2015, 161:325-327.
[30] Ye W C, Fu J J, Wang Q, et al. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets[J]. Journal of Magnetism and Magnetic Materials, 2015, 395:147-151.
[31] Najim M, Smitha P, Agarwala V, et al. Design of light weight multilayered coating of zinc oxide-iron-graphite nano-composites for ultrawide Bandwidth microwave absorption[J]. Journal of Materials Science-Materials in Electronics, 2015, 26(10):7367-7377.
[32] Jiang J J, Yang C M, Wang H B, et al. Preparation and microwave absorption performance of polyaniline/CoFe2O4 nano-composite by coordination-oxidative polymerization-hydrothermal method[J]. Chemical Journal of Chinese Universities-Chinese, 2014, 35(2):402-408.
[33] Sun G C, Yao K L, Liao H X, et al. Microwave absorption characteristics of chiral materials with Fe3O4-polyaniline composite matrix[J]. International Journal of Electronics, 2000, 87(6):735-740.
[34] Hibbins A P, Murray W A, Tyler J, et al. Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure[J]. Physical Review B, 2006, 74(7):073408.
[35] Li S J, Gao J, Cao X Y, et al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial[J]. Optics Express, 2015, 23(3):3523-3533.
[36] Wang N, Tong J M, Zhou W C, et al. Novel quadruple-band microwave metamaterial absorber[J]. IEEE Photonics Journal, 2015, 7(1):5500506.
[37] Zhao J, Cheng Q, Chen J, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 2013, 15:043049.
[38] Xu W R, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber[J]. Applied Physics Letters, 2013, 103(3):031902.
[39] Wu X Y, C G Hu, Y Q Wang, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency[J]. Aip Advances, 2013, 3(2):022114.
[40] Landy N I, Bingham C M, Tyler T, et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12):125104.
[41] Li L, Yang Y, Liang C H. A wide-angle polarization-insensitive ultrathin metamaterial absorber with three resonant modes[J]. Journal of Applied Physics, 2011, 110(6):063702.
[42] Zhou W C, Li K W, Song C, et al. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region[J]. Optics Express, 2015, 23(11):A413-A418.
[43] Duan X Y, Chen S Q, Yang H F, et al. Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials[J]. Applied Physics Letters, 2012, 101(14):143105.
[44] Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 2011, 99(25):253104.
[45] Li W, Wu T L, Wang W, et al. Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers[J]. Applied Physics Letters, 2014, 104(2):022903.
[46] Wang B Y, Liu S B, Bian B R, et al. A novel ultrathin and broadband microwave metamaterial absorber[J]. Journal of Applied Physics, 2014, 116(9):094504.
[47] Hao J P, Lheurette É, Burgnies L, et al. Bandwidth enhancement in disordered metamaterial absorbers[J]. Applied Physics Letters, 2015,105:081102.
[48] Li H, Yuan L H, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics, 2011, 110(1):014909.
[49] Cheng Y Z, Wang Y, Nie Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. Journal of Applied Physics, 2012, 111(4):044902.
[50] Shen Y, Pei Z B, Pang Y Q, et al. An extremely wideband and lightweight metamaterial absorber[J]. Journal of Applied Physics, 2015, 117(22):224503.
[51] Choi W H, Shin J H, Song T H, et al. Design of broadband microwave absorber using honeycomb structure[J]. Electronics Letters, 2014, 50(4):292-U135.
[52] Khurram A A, Ali N, Rakha S A, et al. Optimization of the carbon coating of honeycomb cores for broadband microwave absorption[J]. IEEE Transactions on Electromagnetic Compatibility. 2014, 56(5):1061-1066.
[53] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarizationindependent microwave broadband absorber[J]. Acs Photonics, 2014, 1(3):279-284.
[54] Yuan H, Zhu B O, Feng Y. A frequency and bandwidth tunable metamaterial absorber in x-band[J]. Journal of Applied Physics, 2015, 117(17):173103.
[55] Liu A Q, Zhu W M, Tsai D P, et al. Micromachined tunable metamaterials:A review[J]. Journal of Optics, 2012, 14(11):114009.
[56] Gil I, Bonache J, Garcia-Garcia J, et al. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(6):2665-2674.
[57] Kotsuka Y, Murano K, Amano M, et al. Novel right-handed metamaterial based on the concept of "autonomous control system of living cells" and its absorber applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(3):556-565.
[58] Zhu B, Feng Y J, Zhao J M, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 2010, 18(22):23196-23203.
[59] Xu W H, He Y, Kong P, et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J]. Journal of Applied Physics, 2015, 118(18):184903.
[60] Huang X J, Hu Z R, Liu P G. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction[J]. Aip Advances, 2014, 4(11):117103.
[61] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11):749-758.
[62] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10):630-634.
[63] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035):1291-1294.
[64] Zhu W R, Rukhlenko I D, Si L M, et al. Graphene-enabled tunability of optical fishnet metamaterial[J]. Applied Physics Letters, 2013, 102(12):121911.
[65] Woo J M, Kim M S, Kim H W, et al. Graphene based salisbury screen for terahertz absorber[J]. Applied Physics Letters, 2014, 104(8):081106.
[66] Ning R X, Bao J, Jiao Z, et al. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure[J]. Journal of Applied Physics, 2015, 117:203101.
[67] Skulason H S, Nguyen H V, Guermoune A, et al. 110 GHz measurement of large-area graphene integrated in low-loss microwave structures[J]. Applied Physics Letters, 2011, 99(15):153504.
[68] Gomez-Diaz J S, Perruisseau-Carrier J. Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically biased graphene sheets[J]. Journal of Applied Physics, 2012, 112(12):124906.
[69] Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces[J]. Physical Review B, 2012, 86(19):195408.
[70] Duan W Y, Yin X W, Li Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic[J]. Journal of the European Ceramic Society, 2014, 34(2):257-266.
[71] Wen B, Cao M S, Hou Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65:124-139.
[72] Liu Y, Yin X W, Kong L, et al. Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles[J]. Carbon, 2013, 64:541-544.
[73] Liu X M, Yin X W, Zheng G P, et al. In-situ formation of carbon nanotubes in pyrolytic carbon-silicon nitride composite ceramics[J]. Ceramics International, 2014, 40(1):531-540.
文章导航

/