[1] De Rosa I M, A Dinescu, F Sarasini, et al. Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyestercomposites containing nickel-coated carbon fibers[J]. Composites Science and Technology, 2010, 70(1):102-109.
[2] Huynen I, Quievy N, Bailly C, et al. Multifunctional hybrids for electromagnetic absorption[J]. Acta Materialia, 2011, 59(8):3255-3266.
[3] Kong L B, Li Z W, Liu L, et al. Recent progress in some composite materials and structures for specific electromagnetic applications[J]. International Materials Reviews, 2013, 58(4):203-259.
[4] Yin X W, Kong L, Zhang L T, et al. Electromagnetic properties of Si-C-N based ceramics and composites[J]. International Materials Reviews, 2014, 59(6):326-355.
[5] Smith D R, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003, 90(7):077405.
[6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[7] Zheludev N I. The Road Ahead for Metamaterials[J]. Science, 2010, 328(5978):582-583.
[8] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[9] Chen H S, Zheng B, Shen L, et al. Ray-optics cloaking devices for large objects in incoherent natural light[J]. Nature Communications, 2013, 4:2562.
[10] Zhang S, Zhou J F, Park Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3:942.
[11] Landy N I, Sajuyigbe s, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402.
[12] Li S J, Gao J, Cao X Y, et al. Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber[J]. Applied Physics Letters, 2015, 106(18):181103.
[13] Su Z X, Yin J B, Zhao X P. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures[J]. Optics Express, 2015, 23(2):1679-1690.
[14] Avitzour Y, Urzhumov Y A, Shvets G. Wide-angle infrared absorber based on a negative-index plasmonic metamateria[J]. Physical Review B, 2009, 79(4):045131.
[15] Liu Z Q, Liu X S, Huang S, et al. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic filmformation[J]. Acs Applied Materials & Interfaces, 2015, 7(8):4962-4968.
[16] 庞建峰, 马喜君, 谢兴勇. 电磁吸波材料的研究进展[J]. 电子元件与材料, 2015, 34(2):7-16. Pang Jianfeng, Ma Xijun, Xie Xingyong. Research progress of microwave absorption materials[J]. Eelectronic Components and Materials, 2015, 34(2):7-16.
[17] Miles P A, Westphal W B, Vonhippel A. Dielectric spectroscopy of ferromagnetic semiconductors[J]. Reviews of Modern Physics 1957, 29(3):279-307.
[18] Kong L, Yin X W, Ye F, et al. Electromagnetic wave absorption properties of ZnO-Based materials modified with ZnAl2O4 nanograins[J]. Journal of Physical Chemistry C, 2013, 117(5):2135-2146.
[19] 陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报, 2011, 26(5):449-457. Chen Xuegang, Ye Ying, Cheng Jipeng. Recent progress in electromagnetic wave absorbers[J]. Journal of Inorganic Materials, 2011, 26(5):449-457.
[20] Zhu Y F, Zhang L, Natsuki T, et al. Synthesis of hollow poly(anilineco-pyrrole)-Fe3O4 composite nanospheres and their microwave absorption behavior[J]. Synthetic Metals, 2012, 162(3-4):337-343.
[21] Belaabed B, Wojkiewicz J L, Lamouri S, et al. Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties[J]. Journal of Alloys and Compounds, 2012, 527:137-144.
[22] Wan F, Luo F, Wang H Y, et al. Effects of carbon black (CB) and alumina oxide on the electromagnetic- and microwave-absorption properties of SiC fiber/aluminum phosphate matrix composites[J]. Ceramics International, 2014, 40(10):15849-15857.
[23] Alamri H, Low I M. Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites[J]. Polymer Testing, 2012, 31(6):810-818.
[24] Wen B, Zhao J J, Duan Y P, et al. Electromagnetic wave absorption properties of carbon powder from catalysed carbon black in X and Ku bands[J]. Journal of Physics D-Applied Physics, 2006, 39(9):1960-1962.
[25] Liu Y, Liu X, Wang X. Synthesis and microwave absorption properties of Ni-Zn-Mn spinel ferrites[J]. Advances in Applied Ceramics, 2015, 114(2):82-86.
[26] Ali-Sharbati, Amiri G R, Mousarezaei R. Structural, magnetic, and microwave-absorption properties of nanocrystalline Ca(MnSn)(x) Fe12-2x O19 ferrites[J]. Journal of Electronic Materials, 2015, 44(2):715-719.
[27] Yu M, Yang P A, Fu J, et al. Flower-like carbonyl iron powder modified by nanoflakes:Preparation and microwave absorption properties[J]. Applied Physics Letters, 2015, 106(16):161904.
[28] Li R, Zhou W C, Zhou Y Y, et al. Electromagnetic and microwave absorption properties and antioxidant properties of Co-P coating on carbonyl iron[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2015, 9(1-2):231-233.
[29] Cui C Y, Zhou P P, Wu N D, et al. Microwave absorption properties of Ag3PO4 nanoparticles-modified NI@C nanocapsules[J]. Materials Letters,2015, 161:325-327.
[30] Ye W C, Fu J J, Wang Q, et al. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets[J]. Journal of Magnetism and Magnetic Materials, 2015, 395:147-151.
[31] Najim M, Smitha P, Agarwala V, et al. Design of light weight multilayered coating of zinc oxide-iron-graphite nano-composites for ultrawide Bandwidth microwave absorption[J]. Journal of Materials Science-Materials in Electronics, 2015, 26(10):7367-7377.
[32] Jiang J J, Yang C M, Wang H B, et al. Preparation and microwave absorption performance of polyaniline/CoFe2O4 nano-composite by coordination-oxidative polymerization-hydrothermal method[J]. Chemical Journal of Chinese Universities-Chinese, 2014, 35(2):402-408.
[33] Sun G C, Yao K L, Liao H X, et al. Microwave absorption characteristics of chiral materials with Fe3O4-polyaniline composite matrix[J]. International Journal of Electronics, 2000, 87(6):735-740.
[34] Hibbins A P, Murray W A, Tyler J, et al. Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure[J]. Physical Review B, 2006, 74(7):073408.
[35] Li S J, Gao J, Cao X Y, et al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial[J]. Optics Express, 2015, 23(3):3523-3533.
[36] Wang N, Tong J M, Zhou W C, et al. Novel quadruple-band microwave metamaterial absorber[J]. IEEE Photonics Journal, 2015, 7(1):5500506.
[37] Zhao J, Cheng Q, Chen J, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 2013, 15:043049.
[38] Xu W R, Sonkusale S. Microwave diode switchable metamaterial reflector/absorber[J]. Applied Physics Letters, 2013, 103(3):031902.
[39] Wu X Y, C G Hu, Y Q Wang, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency[J]. Aip Advances, 2013, 3(2):022114.
[40] Landy N I, Bingham C M, Tyler T, et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12):125104.
[41] Li L, Yang Y, Liang C H. A wide-angle polarization-insensitive ultrathin metamaterial absorber with three resonant modes[J]. Journal of Applied Physics, 2011, 110(6):063702.
[42] Zhou W C, Li K W, Song C, et al. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region[J]. Optics Express, 2015, 23(11):A413-A418.
[43] Duan X Y, Chen S Q, Yang H F, et al. Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials[J]. Applied Physics Letters, 2012, 101(14):143105.
[44] Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 2011, 99(25):253104.
[45] Li W, Wu T L, Wang W, et al. Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers[J]. Applied Physics Letters, 2014, 104(2):022903.
[46] Wang B Y, Liu S B, Bian B R, et al. A novel ultrathin and broadband microwave metamaterial absorber[J]. Journal of Applied Physics, 2014, 116(9):094504.
[47] Hao J P, Lheurette É, Burgnies L, et al. Bandwidth enhancement in disordered metamaterial absorbers[J]. Applied Physics Letters, 2015,105:081102.
[48] Li H, Yuan L H, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics, 2011, 110(1):014909.
[49] Cheng Y Z, Wang Y, Nie Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. Journal of Applied Physics, 2012, 111(4):044902.
[50] Shen Y, Pei Z B, Pang Y Q, et al. An extremely wideband and lightweight metamaterial absorber[J]. Journal of Applied Physics, 2015, 117(22):224503.
[51] Choi W H, Shin J H, Song T H, et al. Design of broadband microwave absorber using honeycomb structure[J]. Electronics Letters, 2014, 50(4):292-U135.
[52] Khurram A A, Ali N, Rakha S A, et al. Optimization of the carbon coating of honeycomb cores for broadband microwave absorption[J]. IEEE Transactions on Electromagnetic Compatibility. 2014, 56(5):1061-1066.
[53] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarizationindependent microwave broadband absorber[J]. Acs Photonics, 2014, 1(3):279-284.
[54] Yuan H, Zhu B O, Feng Y. A frequency and bandwidth tunable metamaterial absorber in x-band[J]. Journal of Applied Physics, 2015, 117(17):173103.
[55] Liu A Q, Zhu W M, Tsai D P, et al. Micromachined tunable metamaterials:A review[J]. Journal of Optics, 2012, 14(11):114009.
[56] Gil I, Bonache J, Garcia-Garcia J, et al. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(6):2665-2674.
[57] Kotsuka Y, Murano K, Amano M, et al. Novel right-handed metamaterial based on the concept of "autonomous control system of living cells" and its absorber applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(3):556-565.
[58] Zhu B, Feng Y J, Zhao J M, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 2010, 18(22):23196-23203.
[59] Xu W H, He Y, Kong P, et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J]. Journal of Applied Physics, 2015, 118(18):184903.
[60] Huang X J, Hu Z R, Liu P G. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction[J]. Aip Advances, 2014, 4(11):117103.
[61] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11):749-758.
[62] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10):630-634.
[63] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035):1291-1294.
[64] Zhu W R, Rukhlenko I D, Si L M, et al. Graphene-enabled tunability of optical fishnet metamaterial[J]. Applied Physics Letters, 2013, 102(12):121911.
[65] Woo J M, Kim M S, Kim H W, et al. Graphene based salisbury screen for terahertz absorber[J]. Applied Physics Letters, 2014, 104(8):081106.
[66] Ning R X, Bao J, Jiao Z, et al. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure[J]. Journal of Applied Physics, 2015, 117:203101.
[67] Skulason H S, Nguyen H V, Guermoune A, et al. 110 GHz measurement of large-area graphene integrated in low-loss microwave structures[J]. Applied Physics Letters, 2011, 99(15):153504.
[68] Gomez-Diaz J S, Perruisseau-Carrier J. Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically biased graphene sheets[J]. Journal of Applied Physics, 2012, 112(12):124906.
[69] Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces[J]. Physical Review B, 2012, 86(19):195408.
[70] Duan W Y, Yin X W, Li Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic[J]. Journal of the European Ceramic Society, 2014, 34(2):257-266.
[71] Wen B, Cao M S, Hou Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65:124-139.
[72] Liu Y, Yin X W, Kong L, et al. Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles[J]. Carbon, 2013, 64:541-544.
[73] Liu X M, Yin X W, Zheng G P, et al. In-situ formation of carbon nanotubes in pyrolytic carbon-silicon nitride composite ceramics[J]. Ceramics International, 2014, 40(1):531-540.