[1] Casimir H B G. On the Attraction between two perfectly conducting plates[C]//Centenary issue of the Proceedings of the Royal Netherlands Academy of Arts and Sciences. Amsterdam, 1948, 51:793-795.
[2] Lifshitz E M. The theory of molecular attractive forces between solids[J]. Soviet Physics, 1956, 2:73-83.
[3] Rahi S J, Emig T, Graham N, et al. Scattering theory approach to electrodynamic Casimir forces[J]. Physical Review D, 2009, 80:085021.
[4] R odriguez A W, McCauley A P, Joannopoulos J D, et al. Casimir forces in the time domain:Theory[J]. Physical Review A, 2009, 80:012115.
[5] Svetovoy V B, Zwol P J, Palasantzas G, et al. Optical properties of gold films and the Casimir force[J]. Physical Review B, 2008, 77:035439.
[6] Bressi G, Carugno G, Onofrio R, et al. Measurement of the Casimir force between parallel metallic surfaces[J]. Physical Review Letters, 2002, 88:041804.
[7] Chan H B, Aksyuk V A, Kleiman R N, et al. Quantum mechanical actuation of microelectromechanical systems by the casimir force[J]. Science, 2001, 291(5510):1941-1944.
[8] Harris B W, Chen F, Mohideen U. Precision measurement of the Casimir force using gold surfaces[J]. Physical Review A, 2000, 62:052109.
[9] Zwol P J, Palasantzas G. Repulsive Casimir forces between solid materials with high-refractive-index intervening liquids[J]. Physical Review A, 2010, 81:062502.
[10] Munday J N, Capasso F, Parsegian V A. Measured long-range repulsive Casimir-Lifshitz forces[J]. Nature, 2009, 457(7226):170-173.
[11] Ma J M, Zhao Q, Meng Y G. Magnetically controllable Casimir force based on a superparamagnetic metametamaterial[J]. Physical Review B, 2014, 89:075421.
[12] Wang J, Zhang X, Pei S Y, et al. Tunable Casimir forces by means of the external magnetic field[J]. Physical Review A, 2006, 73:042103.
[13] Grushin A G, Cortijo A. Tunable Casimir repulsion with threedimensional topological insulators[J]. Physical Review Letters, 2011, 106:020403.
[14] Rosa F S S, Dalvit D A R, Milonni P W. Casimir interactions for anisotropic magnetodielectric metamaterials[J]. Physical Review A, 2008, 78:032117.
[15] Zhou F, Spruch L. Van der Waals and retardation (Casimir) interactions of an electron or an atom with multilayered walls[J]. Physical Review A, 1995, 52:297-310
[16] Brevik I, Ellingsen S A, Milton K A. Thermal corrections to the Casimir effect[J]. New Journal of Physics, 2006, 236(8):1-20.
[17] Renne M J. Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies[J]. Physica, 1971, 56:125-137.
[18] Balian R, Duplantier B. Electromagnetic waves near perfect conductors. Ⅱ. Casimir effect[J]. Annals of Physics, 1978, 112:165-208.
[19] Ingold G L, Lambrecht A. Casimir effect from a scattering approach[J]. American Journal of Physics, 2015, 83:156.
[20] Boyer T H. Van der Waals forces and zero-point energy for dielectric and permeable materials[J]. Physical Review A, 1974, 9:2078.
[21] Dzyaloshinskii I E, Lifshitz E M, Pitaevskii L P. General theory of van der Waals forces[J]. Physics-Uspekhi, 1961, 4(2):153-176.
[22] Kenneth O, Klich I, Mann A, et al. Repulsive Casimir forces[J]. Physical Review Letters, 2002, 89:033001.
[23] Iannuzzi D, Capasso F. Comment on "repulsive Casimir forces"[J]. Physical Review Letters, 2003, 91:029101.
[24] Shelby R, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[25] Zhou X, Zhao X P. Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability[J]. Applied Physics Letters, 2007, 91(18):181908.
[26] Ran L, Huangfu J, Chen H, et al. Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss[J]. Physical Review B, 2004, 70:073102.
[27] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 Terahertz[J]. Science, 2004, 306(5700):1351-1353.
[28] Cheng Q, Jiang W X, Cui T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physical Review Letters, 2012, 108:213903.
[29] Rosa F S S, Dalvit D A R, Milonni P W. Casimir-lifshitz theory and metamaterials[J]. Physical Review Letters, 2008, 100:183602.
[30] Zeng R, Yang Y P, Zhu S Y. Casimir force between anisotropic singlenegative metamaterials[J]. Physical Review A, 2013, 87:063823.
[31] Deng G, Liu Z. Z, Luo J. Attractive-repulsive transition of the Casimir force between anisotropic plates[J]. Physical Review A, 2008, 78:062111.
[32] Deng G, Liu Z Z, Luo J. Impact of magnetic properties on the Casimir torque between anisotropic metamaterial plates[J]. Physical Review A, 2009, 80:062104.
[33] Zhao Q, Xiao Z Q, Zhang F L, et al. Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipu,lation devices[J]. Advanced Materials, 2015, 27(40):6187-6194.
[34] Zhao Q, Zhou J, Zhang F L, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12):60-69.
[35] Zhao Q, Kang L, Du B, et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Physical Review Letters, 2008, 101:027402.
[36] Zhang F L, Zhao Q, Lan C W, et al. Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial[J]. Applied Physics Letters, 2014, 104:131907.
[37] Zhang F L, Zhao Q, Kang L, et al. Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial[J]. Physical Review B, 2009, 80:195119.
[38] Zhao R, Koschny Th, Economou E. N, et al. Comparison of chiral metamaterial designs for repulsive Casimir force[J]. Physical Review D, 2010, 82:065025.
[39] Zhao R, Zhou J, Koschny Th, et al. Repulsive Casimir force in chiral metamaterials[J]. Physical Review Letters, 2009, 103:103602.
[40] McCauley A P, Zhao R K, Reid M T, et al. Microstructure effects for Casimir forces in chiral metamaterials[J]. Physical Review B, 2010, 82:165108.
[41] Wilson J H, Allocca A A, Galitski V. Repulsive Casimir force between Weyl semimetals[J]. Physical Review B, 2015, 91:235115.
[42] Rodriguez-Lopez P, Grushin A G. Repulsive Casimir effect with chern insulators[J]. Physical Review Letters, 2014, 112:056804.
[43] Rodriguez A W, Joannopoulos J D, Johnson S G. Repulsive and attractive Casimir forces in a glide-symmetric geometry[J]. Physical Review A, 2008, 77:062107.
[44] Azari A, Miri M, Golestanian R. Effect of the heterogeneity of metamaterials on the Casimir-Lifshitz interaction[J]. Physical Review A, 2010, 82:032512.
[45] Inui N, Miura K. Quantum levitation of graphene sheet by repulsive Casimir forces[J]. Surface Science and Nanotechnology, 2010, 8:57-61.
[46] Drosdoff D, Woods L M. Casimir interactions between graphene sheets and metamaterials[J]. Physical Review A, 2011, 84:062501.
[47] Philbin L U. Quantum levitation by left-handed metamaterials[J]. New Journal of Physics, 2007, 254(9):1-11.
[48] Simpson W M R. Casimir force in a compressive transformation medium[J]. Physical Review A, 2013, 88:063852.
[49] Zhang F L, Feng S Q, Qiu K P, et al. Mechanically stretchable and tunable metamaterial absorber[J]. Applied Physics Letters, 2015, 106(9):091907.
[50] Fan Y C, Zhang F L, Zhao Q, et al. Tunable terahertz coherent perfect absorption in a monolayer graphene[J]. Optics Letters, 2014, 39(21):6269.
[51] Zhang F L, Zhao Q, Zhang W H, et al. Voltage tunable short wirepair type of metamaterial infiltrated by nematic liquid crystal[J]. Applied Physics Letters, 2010, 97(13):134103.
[52] Zhao H J, Zhou J, Kang L, et al. Tunable two-dimensional lefthanded material consisting of ferrite rods and metallic wires[J]. Optics Express, 2009, 17(16):13373-13380.
[53] Kang L, Zhao Q, Zhao H J, et al. Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite[J]. Applied Physics Letters, 2008, 93(17):171909.
[54] Zhao Q, Du B, Kang L, et al. Tunable negative permeability in an isotropic dielectric composite[J]. Applied Physics Letters, 2008, 92(5):051106.
[55] Kang L, Zhao Q, Zhao H J, et al. Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires[J]. Optics Express, 2008, 16(22):17269-17275.
[56] Zhao Q, Kang L, Du B, et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals[J]. Applied Physics Letters, 2007, 90(1):011112.
[57] Zhang F L, Zhao Q, Kang L, et al. Magnetic control of negative permeability metamaterials based on liquid crystals[J]. Applied Physics Letters, 2008, 92(19):193104.
[58] Silveirinha M G. Casimir interaction between metal-dielectric metamaterial slabs:Attraction at all macroscopic distances[J]. Physical Review B, 2010, 82:085101.
[59] Silveirinha M G, Maslovski S I. Comment on "repulsive Casimir force in chiral metamaterials"[J]. Physical Review Letters, 2010, 105:189301.