研究论文

北疆大气降水水汽源识别及其对地下水补给的指示意义

  • 李捷, 庞忠和, 古丽波斯坦·吐逊江, 孔彦龙, 黄天明, 白国营, 赵泓漪, 周东, 杨忠山
展开
  • 1. 中国科学院地质与地球物理研究所, 页岩气与地质工程重点实验室, 北京 100029;
    2. 北京市水文总站, 北京 100089
李捷,博士,研究方向为水循环与环境同位素,电子信箱:lijie@mail.iggcas.ac.cn

收稿日期: 2015-11-24

  修回日期: 2016-03-18

  网络出版日期: 2016-10-21

基金资助

中国博士后科学基金项目(2015M581168);《科技导报》博士生创新研究资助计划项目(kjdb2012004)

Identification of moisture sources in Junggar Basin and its implication for groundwater recharge

  • LI Jie, PANG Zhonghe, TURSUN Gulbostan, KONG Yanlong, HUANG Tianming, BAI Guoying, ZHAO Hongyi, ZHOU Dong, YANG Zhongshan
Expand
  • 1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. Beijing Hydrological Center, Beijing 100089, China

Received date: 2015-11-24

  Revised date: 2016-03-18

  Online published: 2016-10-21

摘要

大气降水是水循环的输入项,其同位素特征是示踪水汽来源及运动路径的有效工具。利用北疆4个大气降水观测站的同位素数据,结合HYSPLIT模式,重点分析了北疆大气降水同位素特征。区域大气降水线方程δD=7.3δ18O+3.5,反映了新疆独特的干旱气候环境。受不同降水水汽来源影响,天山及阿勒泰2个地区降水同位素特征表现不同。天山地区受西风带水汽季节性漂移的影响,氘盈余夏季低冬季高,成“V”型;阿勒泰地区常年受北冰洋水汽影响,氘盈余年内变幅不明显。尽管δ18O均表现为夏季富集、冬季贫化,但多年均值差异明显,该差异也使得利用同位素确定地下水补给来源成为可能。准东盆地东天山附近地下水主要受到来自东天山的大气降水补给,而北侧自流区地下水同位素相对贫化,与阿勒泰站大气降水同位素及氘盈余特征相似,结合地形、水文地质条件等特征,认为该区主要受克拉美丽山大气降水补给。

本文引用格式

李捷, 庞忠和, 古丽波斯坦·吐逊江, 孔彦龙, 黄天明, 白国营, 赵泓漪, 周东, 杨忠山 . 北疆大气降水水汽源识别及其对地下水补给的指示意义[J]. 科技导报, 2016 , 34(18) : 118 -124 . DOI: 10.3981/j.issn.1000-7857.2016.18.015

Abstract

Precipitation is the input of the water cycle, and stable isotopes of precipitation (18O and 2H) are powerful tools in tracing moisture sources and trajectories. In this paper, the characteristics of stable isotopes and deuterium excess in the precipitation are analyzed in the North Xinjiang based on observation data of four precipitation stations and HYSPLIT model. The local meteoric water line (LMWL) is established as δD=7.3δ18O+3.5, indicating the specific regional meteorological conditions. The Tianshan area and Altay area showed different isotopic characteristics due to different moisture sources. The monthly deuterium values in Tianshan area are low in summer and high in winter, which can be attributed to the seasonal drift of the westerlies. The monthly deuterium values in Altay area are constant due to the effect of arctic air mass. Although the monthly δ18O values in both areas are high in summer and low in winter, the amount-weighted averages are diverse, which makes it possible for identifying groundwater recharge areas. The intersection point of the evaporation line near Kelameili Mountain and LMWL has similar values of stable isotopes to the precipitation from Altay station, indicating that groundwater recharge from Kelameili Mountain. Groundwaters near East Tianshan Mountain have similar δ18O values, similar to the precipitation from Urumqi station, which suggesting groundwater in this area is recharged from East Tianshan Mountain.

参考文献

[1] 德罗斯特W, 莫泽尔H, 诺伊迈尔F, 等. 同位素方法在地下水水文学中的应用[M]. 张人权, 编译. 北京:地质出版社, 1983:4-80. Derluost W, Mozer H, Nowimair F, et al. Application of isotopes in groundwater hydrology[M]. Zhang Renquan, trans. Beijing:Geological Publishing House, 1983:4-80
[2] Clark I, Fritz P. Environmental isotopes in hydrogeology[M]. Boca Raton:CRC Press, 1997.
[3] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133:1702-1073.
[4] 吴华武, 章新平, 关华德, 等. 不同水汽来源对湖南长沙地区降水中δD,δ18O的影响[J]. 自然资源学报, 2012, 27(8):1404-1414. Wu Huawu, Zhang Xinping, Guan Huade, et al. Influences of different moisture sources on δD and δ18O in precipitation in Changsha, Hunan Province[J]. Journal of Natural Resources, 2012, 27(8):1404-1414.
[5] Kong Yanlong, Pang Zhonghe. Statistical analysis of stream discharge in response to climate change for Urumqi River catchment, Tianshan Mountains, central Asia[J]. Quaternary International, 2014:336:44-51
[6] 苏小四, 万玉玉, 董维红, 等. 马莲河河水与地下水的相互关系:水化学和同位素证据[J]. 吉林大学学报:地球科学版, 2009, 39(6):1087-1094. Su Xiaosi, Wan Yuyu, Dong Weihong, et al. Hydraulic relationship between Malianhe River and groundwater:hydrogeocheical and isotopic evidences[J]. Journal of Jinlin University:Earth Science Edition, 2009, 39(6):1087-1094.
[7] 马金珠, 黄天明, 丁贞玉, 等. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9):922-930. Ma Jinzhu, Huang Tianming, Ding Zhenyu, et al. Environmental isotopes as the indicators of the groundwater recharge in the South Badain Jaran Desert[J]. Advances in Earth Science, 2007, 22(9):922-930.
[8] 陈宗宇, 万力, 聂振龙, 等. 利用稳定同位素识别黑河流域地下水的补给来源[J]. 水文地质工程地质, 2006, 33(6):9-14. Chen Zongyu, Wan Li, Nie Zhenlong, et al. Indentification of groundwater recharge in the Heihe Basin using envrionmetal isotopes[J]. Hydrogeology & Engineering Geology, 2006, 33(6):9-14.
[9] Li Jie, Pang Zhonghe, Kong Yanlong, et al. Contrasting seasonal distribution of stable isotopes and deuterium excess in precipitation over China[J]. Fresenius Environmental Bulletin, 2014, 23(9):2074-2085.
[10] Kong Yanlong, Pang Zhonghe, Froehlich K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[J/OL]. Tellus Series B-Chemical and Physical Meteorology, 2013, 65:19251, doi:10.3402/tellusb.v65i0.19251.
[11] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468.
[12] Froehlich K, Gibson J, Aggarwal P. Deuterium excess in precipitation and its climatological significance[C]//Proceedings of Study of Environmental Change Using Isotope Techniques, Vienna:IAEA, 2002:54-65.
[13] Merlivat L, Jouzel J. Global climatic interpretation of the deuteriumoxygen 18 relationship for precipitation[J]. Journal of Geophysical Research, 1979, 84(C8):5029-5033.
[14] 庞忠和. 新疆水循环变化机理与水资源调蓄[J]. 第四纪研究, 2014, 34(5):907-917. Pang Zhonghe. Mechanism of water cycle changes and implications on water resources regulation in Xinjiang Uygur Autonomous Region[J]. Quaternary Sciences, 2014, 34(5):907-917.
[15] 刘斌, 陈旭光, 程强, 等. 准噶尔盆地天山北麓水文地质条件变化特征[J]. 新疆地质, 2011, 29(1):90-94. Liu Bin, Chen Xuguang, Cheng Qiang, et al. The changing charcteristic of hydrogeologicc condition in the southern areas of Junggar Basin (The northern piedont areas of the Tianshan Mountains)[J]. Xinjiang Geology, 2011, 29(1):90-94.
[16] Pang Zhonghe, Kong Yanlong, Froehlich K, et al. Processes affecting isotopes in precipitation of an arid region[J]. Tellus, 2011, 63B:352-359.
[17] Tian Lide, Yao tandong, MacClune K, et al. Stable isotopic variations in west China:A consideration of moisture sources[J/OL]. Journal of Geophysical Research-Atmospheres, 2007, 112(D10):doi:10.1029/2006JD007718.
[18] Li Jie, Pang Zhonghe, Froehlich K, et al. Paleo-environment from isotopes and hydrochemistry of groundwater in East Junggar Basin, Northwest China[J]. Journal of Hydrology, 2015, 529:650-661.
[19] Draxler R, Rolph G. 2003:HYSPLIT (HYBRID Single-Particle Lagrangian Integrated Trajectory) model[J/OL]. NOAA Air Resources Laboratory, 2013:www.arl.noaa.gov/ready/hysplit4.html.
[20] Breitenbach S F M, Adkins J F, Meyer H, et al. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India[J]. Earth and Planetary Science Letters, 2010, 292:212-220.
[21] 李小飞, 张明军, 李亚举, 等. 西北干旱区降水中δ18O变化特征及其水汽输送[J]. 环境科学, 2012, 33(3):711-719 Li Xiaofei, Zhang Mingjun, Li Yaju, et al. Characteristic ofδ18O in precipitation and moisture transports over the arid region in Northwest China[J]. Environmental Science, 2012, 33(3):711-719.
[22] 柳鉴容, 宋献方, 袁国富, 等. 西北地区大气降水δ18O的特征及水汽来源[J]. 地理学报, 2008, 63(1):12-22. Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Characteristics of δ18O in Precipitation over Northwest China and its water vapor sources[J]. Acta Geographica Sinica, 2008, 63(1):12-22.
[23] Aizen V B, Aizen E, Fujita K, et al. Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia[J]. Journal of Glaciology, 2005, 51(175):637-654.
[24] Kreutz K J, Wake C P, Aizen V B, et al. Seasonal deuterium excess in a Tien Shan ice core:Influence of moisture transport and recycling in Central Asia[J]. Geophysical Research Letters, 2003, 30(18):1922.
[25] Schotterer U, Fröhlich K, Gäggeler H, et al. Isotope records from Mongolian and Alpine ice cores as climate indicators[J]. Climatic Change, 1997, 36:519-530.
[26] Gonfiantini R. Environmental isotopes in lake studies[M]//Fritz P, Fontes J C, ed. Handbook of Environmental Isotope Geochemistry[M]. New York:Elsevier, 1986(3):113-168.
[27] Edmunds W, Ma J, Aeschbach-Hertig W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China[J]. Applied Geochemistry, 2006, 21(12):2148-2170.
[28] Chen Zongyu, Qi Jixiang, Xu Jianming, et al. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain[J]. Applied Geochemistry, 2003, 18(7):997-1009.
文章导航

/