研究论文

TiO2可见光催化活性的拓展及应用

  • 刘莹 ,
  • 李建志 ,
  • 路成刚 ,
  • 刘晓晖 ,
  • 张玲丽 ,
  • 王玉番 ,
  • 王炜亮
展开
  • 1. 山东师范大学地理与环境学院, 济南 250014;
    2. 山东省固体废物和危险化学品污染防治中心, 济南 250117;
    3. 青岛理工大学环境与市政工程学院, 青岛 266033
刘莹,硕士研究生,研究方向为纳米光催化水处理,电子信箱:2469048282@qq.com

收稿日期: 2016-07-12

  修回日期: 2016-08-07

  网络出版日期: 2016-10-21

基金资助

国家自然科学基金项目(51408349);山东师范大学实验教改项目(SYJG302109);教育部大学生创新创业训练计划项目(201510445166);山东省自然科学基金项目(ZR2014EEQ004)

Research on widening visible light photocatalytic activity of TiO2 and application

  • LIU Ying ,
  • LI Jianzhi ,
  • LU Chenggang ,
  • LIU Xiaohui ,
  • ZHANG Lingli ,
  • WANG Yufan ,
  • WANG Weiliang
Expand
  • 1. College of Geography and Environment, Shandong Normal University, Jinan 250014, China;
    2. Pollution Prevention and Control Central for Solid Waste and Dangerous Chemical of Shandong Province, Jinan 250117, China;
    3. College of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China

Received date: 2016-07-12

  Revised date: 2016-08-07

  Online published: 2016-10-21

摘要

探讨了TiO2的光催化反应机理及目前TiO2光催化剂改性的5种方法,即掺杂改性、表面螯合与衍生、半导体复合、染料光敏化和导电聚合物包覆。综述了几种改性方法对TiO2光催化活性的影响。探讨了改性TiO2光催化氧化在实际中的应用,并展望了TiO2光催化研发的趋势。

关键词: TiO2; 改性; 可见光; 光催化

本文引用格式

刘莹 , 李建志 , 路成刚 , 刘晓晖 , 张玲丽 , 王玉番 , 王炜亮 . TiO2可见光催化活性的拓展及应用[J]. 科技导报, 2016 , 34(18) : 182 -189 . DOI: 10.3981/j.issn.1000-7857.2016.18.025

Abstract

In this paper, the mechanism of TiO2 photocatalytic reaction and the present modifying methods of TiO2 photocatalysis are discussed, including doping modifying, surface chelation and derivation, semiconductor compound, dye-photosensitization and conducting polymer modifying. And the effects of modifying methods on TiO2 photocatalysis activity are analyzed. Applications of modified TiO2 photocatalysis oxidation are reviewed. At the end of the paper, research and application prospect of titanium dioxide are depicted.

参考文献

[1] Fujishima A, Honda K. Electrochemical photolysisof water at a semiconductor electrode[J]. Nature. 1972, 37(1):238-245.
[2] 刘国光,丁雪军,张学治,等. 光催化氧化技术的研究现状及发展趋势[J]. 环境污染治理技术与设备. 2003, 4(8):65-69. Liu Guoguang, Ding Xuejun, Zhang Xuezhi. The study situation and progress of photocatalytic oxidation technology[J]. Techniques and Equipment for Environmental Pollution Control. 2003,4(8):65-69.
[3] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination & Toxicology. 1976, 16(6):697-701.
[4] Steven N F, Allen J B. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. 1977, 81(15):1484-1488.
[5] Gole J L, Stout J D, Burda C, et al. Highly efficient formation of visible light tunable TiO2-x Nx photocatalysts and their transformation at the nanoscale[J]. The Journal of Physical Chemistry B. 2004, 108(4):1230-1240.
[6] 陈水辉, 彭峰, 王红娟. 具有可见光活性的光催化剂研究进展[J]. 现代化工, 2004(7):24-28. Chen Shuihui, Peng Feng, Wang Hongjuan. Progress in research on visible-light photocatalysis[J]. Modern Chemical Industry, 2004(7):24-28.
[7] 周武艺,曹庆云,唐绍裘. 提高纳米二氧化钛可见光光催化活性研究的进展[J]. 硅酸盐学报, 2006(7):861-867. Zhou Wuyi, Cao Qingyun, Tang Shaoqiu. Progress in improving visible light photocatalytic activity of nano-titanium dioxide[J]. Journal of the Chinese Ceramic Society, 2006(7):861-867.
[8] 程萍,顾明元,金燕苹. TiO2光催化剂可见光化研究进展[J]. 化学进展. 2005(1):8-14. Cheng Ping, Gu Mingyuan, Jin Yanping. Recent progress in titania photocatalyst operating under visible light[J]. Progress in Chemisty, 2005(1):8-14.
[9] 郭琼,施亦东. TiO2可见光催化剂的研究进展及其应用[J]. 四川化工, 2008(2):34-36. Guo Qiong, Shi Yidong. The visible-light irradiation of TiO2 photocatalyst[J]. Sichuan Chemical Industry, 2008(2):34-36.
[10] Yang Y, Wen J, Wei J, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination[J]. ACS applied materials & interfaces, 2013, 5(13):6201-6207.
[11] Singh S, Mahalingam H, Singh P K. Polymer-supported titanium dioxide photocatalysts for environmental remediation:A review[J]. Applied Catalysis A:General, 2013, 462:178-195.
[12] Lin L, Wang H, Luo H, et al. Enhanced photocatalysis using sideglowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 307:88-98.
[13] Bouhadoun S, Guillard C, Dapozze F E D E, et al. One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis:Application in photocatalysis[J]. Applied Catalysis B:Environmental, 2015, 174:367-375.
[14] Li X, Liu P, Mao Y, et al. Preparation of homogeneous nitrogendoped mesoporous TiO2 spheres with enhanced visible-light photocatalysis[J]. Applied Catalysis B:Environmental, 2015, 164:352-359.
[15] Kong L, Wang C, Zheng H, et al. Defect-induced yellow color in Nb-Doped TiO2 and its impact on visible-light photocatalysis[J]. The Journal of Physical Chemistry C, 2015, 119(29):16623-16632.
[16] Chowdhury I H, Ghosh S, Naskar M K. Aqueous-based synthesis of mesoporous TiO2 and Ag-TiO2 nanopowders for efficient photodegradation of methylene blue[J]. Ceramics International, 2016, 42(2):2488-2496.
[17] Kaur R, Pal B. Size and shape dependent attachments of Au nanostructures to TiO2 for optimum reactivity of Au-TiO2 photocatalysis[J]. Journal of Molecular Catalysis A:Chemical, 2012, 355:39-43.
[18] Wang B, Yang Z, An H, et al. Photocatalytic activity of Pt-TiO2 films supported on hydroxylated fly ash cenospheres under visible light[J]. Applied Surface Science, 2015, 324:817-824.
[19] 陶玉贵,郑洁,朱龙宝,等. 磷酸盐调控纳米TiO2微结构及其表面羟基密度[J]. 化工进展, 2015(5):1401-1405. Tao Yugui, Zheng Jie, zhu Longbao. Phosphate regulate the microstructure and surface hydroxyl density of nano-titanium dioxide[J]. Chemical Industry and Engineering Progress, 2015(5):1401-1405.
[20] 马国强,郭倩倩,韩小金,等. 硫酸盐化对TiO2催化剂克劳斯活性的影响[J]. 环境工程学报, 2014(11):4842-4847. Ma Guoqiang, Guo Qianqian, Han Xiaojin. Influence of sulfation on Claus activity of TiO2 catalyst[J]. Chinese Journal of Environmental Engineering, 2014(11):4842-4847.
[21] Khan H, Berk D. Effect of a chelating agent on the physicochemical properties of TiO2:characterization and photocatalytic activity[J]. Catalysis Letters, 2014, 144(5):890-904.
[22] Deng X, Yue Y, Gao Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations[J]. Applied Catalysis B:Environmental, 2002, 39(2):135-147.
[23] 曹沛森, 许璞, 王玉宝, 等. 纳米TiO2光催化剂的改性及应用研究进展[J]. 微纳电子技术, 2008(3):145-152. Cao Peilin, Xu Pu, Wang Yubao. Research progress on modification and application of nano-TiO2 photocatalyst[J]. Nanomaterial & Structure, 2008(3):145-152.
[24] Wang X, Kitao O, Hosono E, et al. TiO2-and ZnO-based solar cells using a chlorophyll a derivative sensitizer for light-harvesting and energy conversion[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2010, 210(2):145-152.
[25] Lin Z, Liu P, Yan J, et al. Matching energy levels between TiO2 and α-Fe2O3 in a core——shell nanoparticle for visible-light photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(28):14853-14863.
[26] Cheng X, Jiang J, Jin C, et al. Cauliflower-like α-Fe2O3 microstructures:toluene——water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis[J]. Chemical Engineering Journal, 2014, 236:139-148.
[27] Wang Q, Wang D, Pan R, et al. Composite semiconductor quantum dots CdSe/CdS Co-sensitized TiO2 nanorod array solar cells[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2012, 27(5):876-880.
[28] Somasundaram S, Tacconi N, Chenthamarakshan C R, et al. Photoelectrochemical behavior of composite metal oxide semiconductor films with a WO3 matrix and occluded Degussa P25 TiO2 particles[J]. Journal of Electroanalytical Chemistry, 2005, 577(1):167-177.
[29] Yang R, Lu X, Zhang H, et al. Glycol-assisted construction of threedimensionally ordered macroporous ZnO-Cu2O-TiO2 with enhanced photocatalytic properties[J]. Applied Surface Science, 2016, 362:237-243.
[30] Wang W, Bu F, Jiang J. Porous TiO2 coated α-Fe2O3 ginger-like nanostructures with enhanced electrochemical properties[J]. Materials Letters, 2015, 139:89-92.
[31] Li X, Teng W, Zhao Q, et al. Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays[J]. Journal of Nanoparticle Research, 2011, 13(12):6813-6820.
[32] 黄泱,李顺兴,傅碧玉. 亚甲基蓝表面修饰纳米TiO2降解造纸废水动力学[J]. 环境工程学报, 2012(8):2544-2550. Huang Yang, Li Shunxing, Fu Biyu. Degradation kinetics of wastewater from papermaking on nanosized titanium dioxide surface modified with Methylene Blue[J]. Chinese Journal of Environmental Engineering, 2012(8):2544-2550.
[33] Kim W, Tachikawa T, Majima T, et al. Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3:enhanced activity for H2 production and dechlorination of CCl4[J]. The Journal of Physical Chemistry C, 2009, 113(24):10603-10609.
[34] Dieckmann M S, Gray K A. A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries[J]. Water Research, 1996, 30(5):1169-1183.
[35] Li X, Leng W. Regenerated dye-sensitized photocatalytic oxidation of arsenite over nanostructured TiO2 films under visible light in normal aqueous solutions:an insight into the mechanism by simultaneous (photo) electrochemical measurements[J]. The Journal of Physical Chemistry C, 2013, 117(2):750-762.
[36] 付文,王丽,黄军左. 可见光诱导TiO2光催化及其机理研究进展[J]. 材料导报, 2011, 25(18):54-58. Fu Wen, Wang Li, Huang Junzuo. Progress in TiO2 visible light inducing photocatalysis and its photocatalytic mechanism[J]. Materials Review, 2011, 25(18):54-58.
[37] Kong L, Wang C, Zheng H, et al. Defect-induced yellow color in Nb-Doped TiO2 and its impact on visible-light photocatalysis[J]. The Journal of Physical Chemistry C, 2015, 119(29):16623-16632.
[38] Xu S, Li S, Wei Y, et al. Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101(1):237-249.
[39] 杨传玺,王炜亮,董文平,等. 新型聚2-氨基苯磺酸改性TiO2纳米颗粒的制备及光催化性能[J]. 复合材料学报, 2015(36). Yang Chaunxi, Wang Weiliang, Dong Wenping. Synthesis and photocatalytic avtivity of new poly-2-aminobenzene sulfonic acid modifying TiO2 nano particles[J]. Acta Materiae Compositae Sinica, 2015(36).
[40] 傅深娜,吴明珠,刘克建,等. 纳米TiO2光催化降解环境中有机污染物研究进展[J]. 化工新型材料, 2014(11):232-234. Fu Shenna, Wu Mingzhu, Liu Kejian. Research progress on nano-TiO2 photocatalytic degradation of organic waste in the environment[J]. New Chemical Materials, 2014(11):232-234.
[41] Hamzezadeh-Nakhjavani S, Tavakoli O, Akhlaghi S P, et al. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation[J]. Environmental Science and Pollution Research, 2015, 22(23):18859-18873.
[42] Mohamed M M, Osman G, Khairou K S. Fabrication of Ag nanoparticles modified TiO2-CNT heterostructures for enhanced visible light photocatalytic degradation of organic pollutants and bacteria[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):1847-1859.
[43] Chandra M R, Rao T S, Sreedhar B. Recyclable Sn-TiO2/polythiophene nanohybrid material for degradation of organic pollutants under visible-light irradiation[J]. Chinese Journal of Catalysis, 2015, 36(10):1668-1677.
[44] Sood S, Umar A, Mehta S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds[J]. Journal of colloid and interface science, 2015, 450:213-223.
[45] 林龙利,刘国光,吕文英. TiO2光催化同步去除水体中重金属和有机物研究进展[J]. 科技导报, 2011(23):74-79. Lin Longli, Liu Guoguang, Lv Wenying. Treatment of heavy metals and organic contaminants by titanium dioxide photocatalysis[J]. Science & Technology Review, 2011(23):74-79.
[46] Wen Y, Liu S, Zhang Q, et al. Partially conjugated polyvinyl chloridemodified TiO2 nanoparticles for efficient visible-light-driven photocatalytic reduction of aqueous Cr (VI)[J]. Materials Letters, 2016, 163:262-265.
[47] Deng L, Liu H, Gao X, et al. SnS2/TiO2 nanocomposites with enhanced visible light-driven photoreduction of aqueous Cr (VI)[J]. Ceramics International, 2016, 42(3):3808-3815.
[48] Zhang X, Song L, Zeng X, et al. Effects of electron donors on the TiO2 photocatalytic reduction of heavy metal ions under visible light[M]. Advances in Intelligent Systems, Springer, 2012, 327-333.
[49] Lei X F, Xue X X, Yang H. Preparation and characterization of Agdoped TiO2 nanomaterials and their photocatalytic reduction of Cr (VI) under visible light[J]. Applied Surface Science, 2014, 321:396-403.
[50] Lv Y, Li W, Li J, et al. In situ formation of ZnO scattering sites within a TiO2 nanoparticles film for improved dye-sensitized solar cells performance[J]. Electrochimica Acta, 2015, 174:438-445.
[51] Shalan A E, Elseman A M, Rasly M, et al. Concordantly fabricated heterojunction ZnO-TiO2 nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells[J]. RSC Advances, 2015, 5(125):103095-103104.
[52] Mane R S, Pathan H M, Lokhande C D, et al. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells[J]. Solar Energy, 2006, 80(2):185-190.
[53] Yong S, Nikolay T, Ahn B T, et al. One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2013, 547:113-117.
[54] Prabhu N, Agilan S, Muthukumarasamy N, et al. Enhanced photovoltaic performance of WO3 nanoparticles added dye sensitized solar cells[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(12):5288-5295.
[55] Hara K, Zhao Z, Cui Y, et al. Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells[J]. Langmuir, 2011, 27(20):12730-12736.
[56] Wang Y, Li X, Li D, et al. Controllable synthesis of hierarchical SnO2 microspheres for dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 280:476-482.
[57] Bouras K, Schmerber G, Rinnert H E, et al. Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices[J]. Solar Energy Materials and Solar Cells, 2016, 145:134-141.
[58] Unni G E, Deepak T G, Nair A S. Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells[J]. Materials Science in Semiconductor Processing, 2016, 41:370-377.
[59] 黄娟茹,谭欣,于涛,等. 染料敏化太阳能电池光阳极TiO2薄膜的研究进展[J]. 材料导报, 2011(13):134-141. Huang Juanru, Tan Xin, Yu Tao. Progress in photoanode TiO2 of dyesensitized solar cells[J]. Materials Review, 2011(13):134-141.
[60] Hwang S H, Shin D H, Yun J, et al. SiO2/TiO2 hollow nanoparticles decorated with Ag nanoparticles:enhanced visible light absorption and improved light scattering in dye-sensitized solar cells[J]. Chemistry-A European Journal, 2014, 20(15):4439-4446.
[61] Liang L, Yulin Y, Mi Z, et al. Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence[J]. Journal of Solid State Chemistry, 2013, 198:459-465.
[62] Prabakar K, Son M, Ludeman D, et al. Visible light enhanced TiO2 thin film bilayer dye sensitized solar cells[J]. Thin Solid Films, 2010, 519(2):894-899.
[63] Zhang W, Wang S, Li J, et al. Photocatalytic hydrogen production from methanol aqueous solution under visible-light using Cu/S-TiO2 prepared by electroless plating method[J]. Catalysis Communications, 2015, 59:189-194.
[64] Tiwari A, Mondal I, Pal U. Visible light induced hydrogen production over thiophenothiazine-based dye sensitized TiO2 photocatalyst in neutral water[J]. RSC Advances, 2015, 5(40):31415-31421.
[65] Wang Y, Yu J, Xiao W, et al. Microwave-assisted hydrothermal synthesis of graphene based Au-TiO2 photocatalysts for efficient visiblelight hydrogen production[J]. Journal of Materials Chemistry A, 2014, 2(11):3847-3855.
[66] 李洪刚,李巧玲,万郁楠,等. 纳米银负载TiO2纤维的制备及其杀菌性能[J]. 化工新型材料, 2014(2):177-182. Li Honggang, Li Qiaoling, Wan Yunan. Preparation and antibaoterial propertioes of nanoAg-doped TiO2 fiber[J]. New Chemical Materials, 2014(2):177-182.
[67] He R L, Wei Y, Cao W B. Sterilization of E. coli by Fe-doped TiO2 modified photocatalytic paint under visible light irradiation[J]. Trans Tech Publ, 20081493-1496.
[68] Chang C Y, Hsu S K, Chang C J, et al. The effect of visible light-activated TiO2 thin film on nosocomial pathogens[J]. Trans Tech Publ, 2010268-271.
文章导航

/