研究论文

锆石U-Pb定年与微量元素分析的地质应用

  • 杨甫 ,
  • 陈刚 ,
  • 张文龙 ,
  • 田雯 ,
  • 田涛 ,
  • 赵雪娇
展开
  • 1. 国土资源部煤炭资源勘查与综合利用重点实验室, 西安 710021;
    2. 陕西省煤田地质有限公司, 西安 710021;
    3. 西北大学地质系, 西安 710069;
    4. 陕西煤田地质勘查研究院有限公司, 西安 710021
杨甫,博士,研究方向为盆地构造与非常规天然气地质,电子信箱:yangpu666@163.com

收稿日期: 2015-12-10

  修回日期: 2016-05-19

  网络出版日期: 2016-10-21

基金资助

国土资源部煤炭勘查与综合利用重点实验室自主科研项目(ZZ2015-2);中国地质调查局油气资源项目(1212011220761)

Zircon U-Pb dating and its trace element analysis applied to geology

  • YANG Fu ,
  • CHEN Gang ,
  • ZHANG Wenlong ,
  • TIAN Wen ,
  • TIAN Tao ,
  • ZHAO Xuejiao
Expand
  • 1. Key Lab of Coal Resources Exploration and Comprehensive Utilization, MLR, Xi'an 710021, China;
    2. Shanxi Coal Geology Group Co., LTD, Xi'an 710021, China;
    3. Department of Geology Northwest University, Xi'an 710069, China;
    4. Shanxi Coal Geology Investigation Ration Research Institute Co., Ltd., Xi'an 710021, China

Received date: 2015-12-10

  Revised date: 2016-05-19

  Online published: 2016-10-21

摘要

锆石U-Pb定年与微量元素同时测定的原位微区分析是目前应用最广泛的地质测年方法之一,对锆石形貌学、内部结构及地球化学特征进行深入研究,是正确理解、解释锆石原位微区分析测年结果的关键。通过锆石的阴极发光图像(CL)、背散射电子图像(BSE),结合锆石的Th/U比值及稀土配分模式曲线特征,可判别不同锆石的成因类型;通过锆石的微量元素分析,可判别锆石寄主岩石的成因类型及形成环境;利用Ti温度计可限定岩体的岩浆源区深度范围,结合锆石寄主岩石类型及寄主岩石中深源包裹体的研究,可进一步推断锆石母岩浆的起源。锆石U-Pb定年与微量元素分析相结合的地质测年方法,已成功地应用于最大沉积地层时代限定、碎屑岩物源分析以及古洋盆演化过程约束等方面,且具有强有力的发展前景。

本文引用格式

杨甫 , 陈刚 , 张文龙 , 田雯 , 田涛 , 赵雪娇 . 锆石U-Pb定年与微量元素分析的地质应用[J]. 科技导报, 2016 , 34(18) : 221 -229 . DOI: 10.3981/j.issn.1000-7857.2016.18.030

Abstract

Zircon U-Pb dating and trace elements in situ microanalysis is one of the most widely used methods of geological dating. The zircon morphology, internal structure and geochemistry significance in-depth study are the key to properly understanding and interpreting the meaning of in situ microanalysis zircon dating. By zircon cathodoluminescence, backscattered electron images, combined with zircon Th/U ratios and the characteristic of REE distribution patterns, we can determine different types of zircon. Zircon trace elements can reflect genetic types and environment of host rocks. Zircon Ti thermometer may limit the depth of the magma source rock range. Combining zircon host rock types and the study of deep source inclusion in host rocks may further reflect the parent magma origin. Combination of zircon UPb dating and trace elements is an important method that has been successfully applied to determining maximum depositional age, provenance analysis, closure time of the paleo-ocean and so on. There is a strong development prospect for it.

参考文献

[1] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry[J]. Geostandards Newsletter, 2004, 28(3):353-370.
[2] 柳小明, 高山, 第五春荣, 等. 单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J]. 科学通报, 2007, 52(2):228-235. Liu Xiaoming, Gao Shan, Diwu Chunrong, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICPMS in 20μm spot size[J]. Chinese Science Bulletin, 2007, 52(9):1257-1264.
[3] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589-1604. Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569.
[4] 周建雄, 陈振宇. 电子针探下锆石阴极发光研究[M]. 成都:电子科技大学出版社, 2010:1-104. Zhou Jianxiong, Chen Zhenyu. Study on cathodoluminescence of zircon by electron probe[M]. Chengdu:Electronic Science and Technology University Press, 2010:1-104.
[5] Crofu F, Hanchar J M, Hoskin P W O,et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):469-495.
[6] Maas R, Kinny P D, Williams I S, et al. The earth's oldest known crust:a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia[J]. Geochimica et Cosmochimica Acta, 1992, 56(3):1281-1300.
[7] Belousova E A, Griffin W L, Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622.
[8] Kinny P D, Wijbrans J R, Froude D O, et al. Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia[J]. Australian Journal of Earth Sciences, 1990, 37(1):51-69.
[9] Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138
[10] Hinton R W, Upton B G J. The chemistry of zircon:variations within and between large crystals from syenite and alkali basalt xenoliths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3287-3302.
[11] Belousova E A, Griffin W L, Pearson N J. Trace element composition and catholuminescence properties of Southern African kimberlitic zircons[J]. Mineralogical Magazine, 1998, 62(3):355-366.
[12] Schaltegger U, Fanning C M, Gnther D, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in high grade metamorphism:Conventional and in-situ U-Pb isotope, cathodoluminescence and micro chemical Evidence[J]. Contributions to Mineralogy and Petrology, 1999, 134(2-3):186-201.
[13] Whitehouse M J, Platt J P. Dating high-grade metamorphism-constraints from rare-earth elements in zircon and garnet[J]. Contributions to Mineralogy and Petrology, 2003, 145(1):61-74.
[14] Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 2000, 28(7):627-630.
[15] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy & Geochemistry, 2003, 53(1):27-62
[16] Bingen B, Austrheim H, Whitehouse M J, et al. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway[J]. Contributions to Mineralogy and Petrology, 2004, 147(6):671-683.
[17] Grant M L, Wilde S A, Wu F, et al. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary[J]. Chemical Geology, 2009, 261(1):155-171.
[18] Iizuka T, Horie K, Komiya T, et al. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada:Evidence for early continental crust[J]. Geology, 2006, 34(4):245-248.
[19] Xia Q X, Zheng Y F. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen:Implications for action of supercritical fluid during continental subduction-zone Metamorphism[J]. Lithos, 2010, 114(3):385-412.
[20] Schulz B, Klemd R, Brätz H. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710.
[21] Ireland T R, Wlotzka F. The oldest zircons in the solar system[J]. Earth and Planetary Science Letters, 1992, 109(1):1-10.
[22] Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3):637-648.
[23] 宋国学, 秦克章, 刘铁兵, 等. 阿尔泰南缘阿舍勒盆地泥盆纪火山岩中古老锆石的U-Pb年龄, Hf同位素和稀土元素特征及其地质意义[J]. 岩石学报, 2010, 26(10):2946-2958. Song Guoxue, Qin Kezhang, Liu Tiebing, et al. The U-Pb ages, Hf isotope and REE patterns of older zircons from Devonian volcanic rocks in Ashele basin on the southern margin of Altai orogen and its geological significance[J]. Acta Petrologica Sinica, 2010, 26(10):2946-2958.
[24] Gregory C J, Buick I S, Hermann J, et al. Mineral-scale trace element and U-Th-Pb age constraints on metamorphism and melting during the Petermann Orogeny (central Australia)[J]. Journal of Petrology, 2009, 50(2):251-287.
[25] Ma X, Shu L, Jahn B M, et al. Precambrian tectonic evolution of Central Tianshan, NW China:constraints from U-Pb dating and in situ Hf isotopic analysis of detrital zircons[J]. Precambrian Research, 2012, 222(3):450-473.
[26] Trail D, Watson E B, Tailby N D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 2012, 97(1):70-87.
[27] Heaman L M, Bowins R, Crocket J. The chemical composition of igneous zircon suites:Implications for geochemical tracer studies[J]. Geochimica et Cosmochimica Acta, 1990, 54(6):1597-1607.
[28] Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7):643-646.
[29] Hanchar J M, Van Westrenen W. Rare earth element behavior in zircon-melt systems[J]. Elements, 2007, 3(1):37-42.
[30] Belousova E A, Reid A J, Griffin W L, et al. Rejuvenation vs. recycling of archean crust in the Gawler Craton, South Australia. Evidence from U-Pb and Hf-isotopes in detrital zircon[J]. Lithos, 2009, 113(3):570-582.
[31] 张璐, 巴金, 陈能松, 等. 全吉群碎屑锆石的U-Pb年龄谱和微量元素:基底热事件信息和早期演化启示[J]. 地球科学, 2012, 37(增刊1):28-37. Zhang Lu, Ba Jing, Chen Nengsong, et al. U-Pb age spectra and trace elements of detrital zircon from Quanji Group implications for thermal events and early evolution in the basement[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(Suppl l):28-37.
[32] 郑建平, 路凤香, 余淳梅, 等. 汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素、U-Pb定年和微量元素研究:华北下地壳早期演化的记录[J]. 科学通报, 2004, 49(4):375-383. Zheng Jianping, Lu Fengxiang, Yu Chunmei, et al. Study of Hf and UPd dating and trace elements for zircon of granulite xenoliths in Hannuoba basalts:Record of early crust evolution in North China[J]. Chinese Science Bulletin, 2004, 49(4):375-383.
[33] Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1-2):537-571.
[34] Liati A, Gebauer D. Constraining the prograde and retrograde PTt path of Eocene HP rocks by SHRIMP dating of different zircon domains:inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece[J]. Contributions to Mineralogy and Petrology, 1999, 135(4):340-354.
[35] Henrique-Pinto R, Janasi V A, Vasconcellos A, et al. Zircon provenance in meta-sandstones of the São Roque Domain:Implications for the Proterozoic evolution of the Ribeira Belt, SE Brazil[J]. Precambrian Research, 2015, 256(3):271-288.
[36] Grimes C B, John B E, Cheadle M J, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere[J]. Contributions to Mineralogy and Petrology, 2009, 158(6):757-783.
[37] Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844.
[38] Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437.
[39] Fu B, Page F Z, Cavosie A J, et al. Ti-in-zircon thermometry:Applications and limitations[J]. Contributions to Mineralogy and Petrology, 2008, 156(2):197-215.
[40] Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4):413-433.
[41] 高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2):417-432. Gao Xiaoying, Zheng Yongfei. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2):417-432.
[42] Page F Z, Fu B, Kita N T, et al. Zircons from kimberlite:new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry[J]. Geochimica et Cosmochimica Acta, 2007, 71(15):3887-3903.
[43] 王清海, 许文良, 杨德彬, 等. 锆石中钛温度计在鲁西-苏北地区中生代侵入杂岩中的应用[J]. 岩石学报, 2008, 24(10):2331-2342. Wang Qinghai, Xu Wenliang, Yang Debin, et al. Application of titanium-in-zircon thermometry to Mesozoic intrusive complex from the western Shandong and northern Jiangsu[J]. Acta Petrologica Sinica, 2008, 24(10):2331-2342.
[44] Kröner A, Williams I S, Compston W, et al. Zircon ion microprobe dating of high-grade rocks in Sri Lanka[J]. The Journal of Geology, 1987, 95(6):775-791.
[45] Kröner A, Jaeckel P, Williams I S. Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods:U-Pb and Pb-Pb ages for igneous and metamorphic zircons from northern Sri Lanka[J]. Precambrian Research, 1994, 66(1):151-181.
[46] Mezger K, Krogstad E J. Interpretation of discordant U-Pb zircon ages:an evaluation[J]. Journal of Metamorphic Geology, 1997, 15(1):127-140.
[47] 汪相, 陈洁, 罗丹. 浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义[J]. 地质论评, 2008, 54(3):387-398. Wang Xiang, Chen Jie, Luo Dan. Study on petrogenesis of zircons from the Danzhu granodiorite and its geological implications[J]. Geological Review, 2008, 54(3):387-398.
[48] Xue F, Rowley D B, Tucker R D, et al. U-Pb zircon ages of granitoid rocks in the North Dabie complex, Eastern Dabie shan, China[J]. The Journal of Geology, 1997, 105(6):744-753.
[49] Xie Z, Chen J F, Zhou T. U-Pb zircon ages of the rocks in Northern Dabie terrain, China[J]. Scientia Geologica Sinica, 1998, 7(4):501-512.
[50] Rainbird R H, Hamilton M A, Young G M. Detrital zircon geochronology and provenance of the Torridonian, NW Scotland[J]. Journal of the Geological Society, 2001, 158(1):15-27.
[51] Surpless K D, Graham S A, Covault J A, et al. Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic forearc basin[J]. Geology, 2006, 34(1):21-24.
[52] Brown E H, Gehrels G E. Detrital zircon constraints on terrane ages and affinities and timing of orogenic events in the San Juan Islands and North Cascades, Washington[J]. Canadian Journal of Earth Sciences, 2007, 44(10):1375-1396.
[53] Dickinson W R, Gehrels G E. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau:Evidence for transcontinental dispersal and intraregional recycling of sediment[J]. Geological Society of America Bulletin, 2009, 121(3-4):408-433.
[54] Jones J V, Connelly J N, Karlstrom K E, et al. Age, provenance, and tectonic setting of Paleoproterozoic quartzite successions in the southwestern United States[J]. Geological Society of America Bulletin, 2009, 121(1-2):247-264.
[55] Barbeau D L, Ducea M N, Gehrels G E, et al. U-Pb detrital-zircon geochronology of northern Salinian basement and cover rocks[J]. Geological Society of America Bulletin, 2005, 117(3-4):466-481.
[56] Tucker R T, Roberts E M, Hu Y, et al. Detrital zircon age constraints for the Winton Formation, Queensland:contextualizing Australia's Late Cretaceous dinosaur faunas[J]. Gondwana Research, 2013, 24(2):767-779.
[57] Ludwig K R. Isoplot v3.71:A geochronological toolkit for Microsoft Excel[M]. Berkeley:California, Berkeley Geochronology Center, 2009.
[58] 李双应, 程成, 王松, 等. 华北地台南缘霍邱安阳山地区八公山群地层时代归属(青白口纪):来自碎屑锆石年代学的制约[J]. 地质科学, 2014, 49(2):608-617. Li Shuangying, Cheng Cheng, Wang Song, et al. Stratigraphy time of the Bagongshan Group in the Anyangshan area of Huoqiu County in the south margin of the North China Block (the Qingbaikou):Constraints from the detrital zircon chronology[J]. Chinese Journal of Geology, 2014, 49(2):608-617.
[59] 孙蓓蕾, 曾凡桂, 刘超, 等. 太原西山上古生界含煤地层最大沉积年龄的碎屑锆石U-Pb定年约束及地层意义[J]. 地质学报, 2014, 88(2):185-197. Sun Beilei, Zeng Fangui, Liu Chao, et al. Constraints on U-Pb dating of detrital zircon of the maximum depositional age for upper Paleozoic coal-bearing strata in Xishan, Taiyuan and its stratigraphic significance[J]. Acta Geologica Sinica, 2014, 88(2):185-197.
[60] 第五春荣, 孙勇, 刘养杰, 等. 秦皇岛柳江地区长龙山组石英砂岩物质源区组成-来自碎屑锆石U-Pb-Hf同位素的证据[J]. 岩石矿物学杂志, 2011, 30(1):1-12. Diwu Chunrong, Sun Yong, Liu Yangjie, et al. The protolith nature of quartz sandston from Changlongshan Formation in Liujiang area, Qinhuangdao city:Evidence of U-Pb and Hf isotope from detrital zircon[J]. Acta Petrologica et Mineralogica, 2011, 30(1):1-12.
[61] Geslin J K, Link P K, Fanning C M. High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho[J]. Geology, 1999, 27(4):295-298.
[62] Cawood P A, Nemchin A A. Provenance record of a rift basin:U/Pb ages of detrital zircons from the Perth Basin, Western Australia[J]. Sedimentary Geology, 2000, 134(3):209-234.
[63] 胡波, 翟明国, 郭敬辉, 等. 华北克拉通北缘化德群中碎屑锆石的LA-ICP-MS U-Pb年龄及其构造意义[J]. 岩石学报, 2009, 25(1):193-211. Hu Bo, Zhai Mingguo, Guo Jinghui, et al. LA-ICP-MS U-Pb geochronology of detrital zircons from the Huade group in the northern margin of the North China Craton and its tectonic significance[J]. Acta Petrologica Sinica, 2009, 25(1):193-211.
[64] 第五春荣, 孙勇, 高剑峰, 等. 华北克拉通早前寒武纪构造-热事件性质探索:铁铜沟组石英岩中碎屑锆石U-Pb-Hf-O同位素组成[J]. 科学通报, 2013, 58(28-29):2946-2957. Diwu Chunrong, Sun Yong, Gao Jianfeng, et al. Early Precambrian tectonothermal events of the North China Craton:Constraints from in situ detrital zircon U-Pb, Hf and O isotopic compositions in Tietonggou Formation[J]. Chinese Science Bulletin, 2013, 58(31):3760-3770.
[65] Gehrels G. Detrital zircon U-Pb geochronology:Current methods and new opportunities[M/OL]//Tectonics of sedimentary Bbasins:Rrecent Advances. Hoboken, USA:Wiley Online Library, 2011:45-62.[2015-10-21]. http://onlinelibrary.wiley.com.
[66] Berry R F, Jenner G A, Meffre S, et al. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?[J]. Earth and Planetary Science Letters, 2001, 192(2):207-222.
[67] Drew J H, Glen A G, Leemis L M. Computing the cumulative distribution function of the Kolmogorov-Smirnov statistic[J]. Computational Statistics & Data Analysis, 2000, 34(1):1-15.
[68] DeGraaff-Surpless K, Mahoney J B, Wooden J L, et al. Lithofacies control in detrital zircon provenance studies:Insights from the Cretaceous Methow basin, southern Canadian Cordillera[J]. Geological Society of America Bulletin, 2003, 115(8):899-915.
[69] Sircombe K N, Hazelton M L. Comparison of detrital zircon age distributions by kernel functional estimation[J]. Sedimentary Geology, 2004, 171(1):91-111.
[70] Satkoski A M, Wilkinson B H., Hietpas J, et al. Likeness among detrital zircon populations:An approach to the comparison of age frequency data in time and space[J]. GSA Bulletin, 2013, 125(12):1783-1799
[71] Dong Y P, Liu X M, Neubauer F, et al. Timing of Paleozoic amalgamation between the North China and South China Blocks:Evidence from detrital zircon U-Pb ages[J]. Tectonophysics, 2013, 586(2):173-191.
[72] Yan Z, Wang Z Q, Yan Q R, et al. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, central China:Implications for the tectonic evolution of the Qinling orogenic belt[J]. Journal of Sedimentary Research, 2012, 82(1):9-20.
[73] Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China:Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(2):213-237.
[74] Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China:Constraints on orogenic process[J]. Journal of Asian Earth Science, 2013, 72(1):129-151.
[75] 程胜东, 方俊钦, 赵盼, 等. 内蒙古西拉木伦河两岸志留-泥盆系碎屑锆石年龄及其构造意义[J]. 岩石学报, 2014, 30(7):1909-1921. Cheng Shengdong, Fang Junqin, Zhao Pan, et al. Detrital zircon ages of the silurian-devonian clastic rocks in south and north banks of Xar Moron River, Inner Mongolia[J]. Acta Petrologica Sinica, 2014, 30(7):1909-1921.
文章导航

/