研究论文

乙酸条件下方解石溶解特征及其地质意义

  • 王明格 ,
  • 宋土顺 ,
  • 徐九华 ,
  • 李占芳 ,
  • 田壮 ,
  • 刘胜昌
展开
  • 1. 北京科技大学资源工程系, 北京 100083;
    2. 华北理工大学矿业工程学院, 唐山 063009;
    3. 河北省地矿局第二地质大队, 唐山 063004;
    4. 华北理工大学轻工学院, 唐山 064000
王明格,副教授,研究方向为固体矿产勘查,电子信箱:wmglzf2@126.com

收稿日期: 2016-01-04

  修回日期: 2016-05-06

  网络出版日期: 2016-10-21

基金资助

国土资源部公益性行业科研项目(201111002-04);华北理工大学博士启动项目

Characteristics and geological significance of calcite dissolution under acetic acid conditions

  • WANG Mingge ,
  • SONG Tushun ,
  • XU Jiuhua ,
  • LI Zhanfang ,
  • TIAN Zhuang ,
  • LIU Shengchang
Expand
  • 1. Resource Engineering Department, University of Science and Technology Beijing, Bejing 100083, China;
    2. School of Mines Engineering, North China University of Science and Technology, Tangshan 063009, China;
    3. The Second Geological Brigade of Hebei Geology and Mineral Exploration Bureau, Tangshan 063004, China;
    4. Qinggong College, North China University of Science and Technology, Tangshan 064000, China

Received date: 2016-01-04

  Revised date: 2016-05-06

  Online published: 2016-10-21

摘要

针对方解石溶解的显微岩相学特征难以识别的问题,以纯净方解石为对象,依据松辽盆地扶余油层地质条件,通过乙酸-方解石相互作用实验,研究了方解石的溶解特征及其地质意义。结果表明,方解石在不同温度下发生尺度不同的溶解作用及质量损失,离子质量浓度呈现规律性变化,Ca2+离子浓度为684.68~1255.25 mg/L,HCO3-离子浓度为2239~3821 mg/L,矿化度为3088~5456 mg/L;方解石溶解的显微岩相学特征包括残余锥、残余细晶叠瓦状排列、齿状残余锥、瘤状残余锥及尖锐残余锥等;乙酸条件下方解石最适合的溶解温度为100~130℃。这项研究可为方解石溶解地质特征鉴定、油气藏储层成岩作用及次生孔隙预测等提供一定的理论基础。

本文引用格式

王明格 , 宋土顺 , 徐九华 , 李占芳 , 田壮 , 刘胜昌 . 乙酸条件下方解石溶解特征及其地质意义[J]. 科技导报, 2016 , 34(18) : 230 -235 . DOI: 10.3981/j.issn.1000-7857.2016.18.031

Abstract

Since it is difficult to identify microscopic petrographic features of calcite dissolution, we take, pure calcite as the research object, and base on the Fuyu reservoir geological conditions of Songliao basin to study the calcite dissolution characteristics and geological significance through acetic acid-calcite interaction experiments. Results show the followings. Ccalcite is found of having different scale dissolutions and mass losses in different temperatures; ion concentration show regular changes, with Ca2+ ion concentration being 684.68~1255.25 mg/L, HCO3- ion concentration 2239~3821 mg/L, salinity 3088~5456 mg/L; calcite dissolution microscopic features include residual cone, residual fine crystal imbricate arrangement, dentate residual cone, tumor residual cone, residual sharp cone, etc.; under the acetic acid condition the most suitable temperature for calcite dissolution is 100~130℃. This study provides a certain theoretical basis for the identification of geological features of calcite dissolution reservoir and the function of reservoir into rock, and secondary porosity prediction.

参考文献

[1] 于炳松, 赖兴运. 克拉2气田储集岩中方解石胶结物的溶解及其对次生孔隙的贡献[J]. 矿物岩石, 2006, 26(2):74-79. Yu Bingsong, Lai Xingyun. Dissolution of calcite cement and its contribution to zhe secondary pores of reservoir in zhe Kela 2 gas field in zhe Tarim Basin[J]. Jmineral Petrol, 2006, 26(2):74-79.
[2] 宋土顺, 陶学双, 刘立, 等. 鄂尔多斯盆地西缘马家滩地区石盒子组砂岩的岩石学、地球化学与成岩作用特征[J]. 世界地质, 2012, 31(4):648-655. Song Tushun, Tao Xueshuang, Liu Li, et al. Sandstone petrology, geochemistry and diagenetic features of Shihezi Formation in Majiatan area. western Erdos Basin[J]. Global Geology, 2012, 31(4):648-655.
[3] 宋土顺, 马锋, 刘立, 等. 大庆长垣扶余油层砂岩中方解石胶结物的碳、氧同位素特征及其成因[J]. 石油与天然气地质, 2015, 36(2):255-261. Song Tushun, Ma Feng, Liu Li, et al. Features and genesis of carbonoxygen isotopes in calcite cement from sandstone in oil-bearing Fuyu layer of Daqing Placanticline[J]. Oil & Gas Geology, 2015, 36(2):255-261.
[4] 侯月明, 崔振昂. 流动热水介质下方解石溶解动力学数值模拟[J]. 天然气技术, 2010,4(6):29-31. Hou Yueming, Cui Zhenang. Numerical simulation of calcite dissolution kinetics under flowing thermal water[J]. Natural Gas Technology, 2010,4(6):29-31.
[5] 范明, 胡凯, 蒋小琼, 等. 酸性流体对碳酸盐岩储层的改造作用[J]. 地球化学, 2009, 38(1):20-26. Fan Ming, Hu Kai, Jiang Xiaoqiong, et al. Effect of acid fluid on carbonate reservoir reconstrucaion[J]. Geochimica, 2009, 38(1):20-26.
[6] 曲希玉, 朱文慧, 刘立, 等. 松辽盆地南部含片钠铝石砂岩储层岩石学特征及成因[J]. 科技导报, 2015(7):13-19. Qu Xiyu, Zhu Wenhui, Liu Li, et al. Petrology characteristics and the origin of dawsonite-bearing sandstone reservoir in southern Songliao basin[J]. Science & Technology Review, 2015(7):13-19.
[7] Plummer L N, Parkhurst D L, Wigley T M L. Critical review of the kinetics of calcite dissolution and precipitation[J]. Acs Symposium, 1979, 3(12):1663-1670.
[8] 宋土顺, 曲希玉, 刘红艳, 等. 岩屑长石砂岩与CO2流体在水热条件下的相互作用[J]. 矿物岩石, 2012, 32(3):19-24. Song Tushun, Qu Xiyu, Liu Hongyan, et al. Lithic feldspathic sandstone and CO2 under hydrothermal fluid interaction[J]. Jmineral Petrol, 2012, 32(3):19-24.
[9] 刘璟, 赵峰华, 谌书, 等. 方解石处理酸性矿排水次生矿物学和渗透性的研究[J]. 煤炭学报, 2012, 37(6):1010-1014. Liu Jing, Zhao Fenghua, Chen Shu, et al. Experimental study on secondary mineralogy and permeability during treatment acid mine drainage using calcite[J]. Journal of China Coal Society, 2012, 37(6):1010-1014.
[10] 张学洪, 许立巍, 朱义年, 等. 石灰石和方解石预处理酸性含氟废水的试验研究[J]. 矿冶工程, 2005, 25(2):49-52. Zhang Xuehong, Xu Liwei, Zhu Yinian, et al. Utilization of limestone and calcite in the pre-trestment of acidic fluoride-containing wastewater[J]. Minig and Metallurgical Enaigeering, 2005, 25(2):49-52.
[11] 张慧, 宋土顺, 刘立, 等. 酸性流体作用下斜长石的稳定性[J]. 世界地质, 2014, 33(3):535-542. Zhang Hui, Song Tushun, Liu Li, et al. Plagioclase stability under acidic fluid action[J]. Global Geology, 2014,33(3):535-542.
[12] Lehmann O, Birnhack L, Lahav O. Design aspects of calcite-dissolution reactors applied for post treatment of desalinated water[J]. Desalination, 2013, 314(4):1-9.
[13] Al-Khaldi M H, Nasr-El-Din H A, Mehta S, et al. Reaction of citric acid with calcite[J]. Chemical Engineering Science, 2007, 62(21):5880-5896.
[14] 孟繁奇, 李春柏, 刘立, 等. CO2-咸水-方解石相互作用实验[J]. 地质科技情报, 2013, 32(3):171-176. Meng Fanqi, Li Chunbai, Liu Li, et al. Experiment of CO2-saline water-calcite interactions[J]. Geological Science and Technology Information, 2013, 32(3):171-176.
[15] 刘再华, Wolfgang D. 流动CO2-H2O系统中方解石溶解动力学机制-扩散边界层效应和CO2转换控制[J]. 地质学报, 1998, 72(4):340-348. Liu Zaihua, Wolfgang D. Dissolution kinetics of calcite in CO2-H2O solutions in turbulent flow:the role of the diffusion boundary layer and the slow reaction CO2+H2O⇄H++HCO3[J]. Acta Geologica Sinica, 1998, 72(4):340-348.
文章导航

/