专题论文

基于软印刷技术的竹材表面仿制荷叶超疏水结构

  • 王发鹏 ,
  • 李松
展开
  • 1. 浙江农林大学工程学院, 杭州 311300;
    2. 浙江省木材科学与技术重点实验室, 杭州 311300
王发鹏,博士研究生,研究方向为木竹材仿生与智能化,电子信箱:wfp880808@163.com

收稿日期: 2015-12-14

  修回日期: 2016-03-05

  网络出版日期: 2016-10-21

基金资助

浙江省自然科学基金重点项目(LZ15C160002);浙江农林大学人才启动项目(2014FR077)

The super-hydrophobic structure of lotus leaf generated on the bamboo surface based on soft lithography

  • WANG Fapeng ,
  • LI Song
Expand
  • 1. College of Engineering, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China;
    2. Key Laboratory of Wood Science and Technology, Hangzhou 311300, China

Received date: 2015-12-14

  Revised date: 2016-03-05

  Online published: 2016-10-21

摘要

利用软印刷技术,研究了在竹材表面仿制荷叶表面的超疏水性微纳结构。以新鲜荷叶为模板,以聚二甲基硅氧烷(PDMS)为印章,经过两次复形处理使竹材表面获得类似荷叶表面的超疏水结构。扫描电子显微镜(SEM)观测及接触角测试结果表明,制备的仿生荷叶竹材样品具有与荷叶类似的微纳乳突结构粗糙表面,其与水滴的接触角达到150.5°(平均值),非常接近荷叶表面的接触角(154.5°),表现出超疏水特性。仿生荷叶微纳结构竹材样品的成功制备,证实了纳米技术赋予竹材等亲水材料以超疏水性能的可行性。

本文引用格式

王发鹏 , 李松 . 基于软印刷技术的竹材表面仿制荷叶超疏水结构[J]. 科技导报, 2016 , 34(19) : 101 -104 . DOI: 10.3981/j.issn.1000-7857.2016.19.017

Abstract

The super-hydrophobic micro-nano structure of the lotus leaf is generated on bamboo surfaces by soft lithography. The superhydrophobic structure created on the bamboo surfaces is similar to that of the lotus leaf after twice replication, with fresh lotus leaves as the template and the polydimethylsiloxane(PDMS) as the seal. The results of the scanning electron microscopy(SEM) and the water contact angle(WCA) measurements show that the prepared bionic lotus-leaf bamboo samples enjoy lotus-leaf-like micro-nano papillary rough surfaces. The WCA is 150.5°(the average value), very close to that of lotus leaf surfaces(154.5°), displaying a super-hydrophobic property. The successful preparation of the bionic lotus leaf micro-nano structure samples confirms the feasibility that a super-hydrophobic surface on bamboo and other hydrophilic materials could be achieved with the nano-technology.

参考文献

[1] 于文吉,江泽慧,叶克林.竹材特性研究及其进展[J].世界林业研究,2002,15(2):50-55.Yu Wenji,Jiang Zehui,Ye Kelin.Research and progress on the characteristics of bamboos[J].World Forestry Research,2002,15(2):50-55.
[2] 王倩,李念平,曾德军,等.竹材组合墙体构件热湿耦合迁移特性[J].科技导报,2010,28(17):87-90.Wang Qian,Li Nianping,Ceng Dejun,et al.Coupled heat and moisture transfer in bamboo composite wall[J].Science & Technology Review,2010,28(17):87-90.
[3] 田根林,余雁,王戈,等.竹材表面超疏水改性的初步研究[J].北京林业大学学报,2010,32(3):166-169.Tian Genlin,Yu Yan,Wang Ge,et al.Preliminary study on superhydrophobic modification of bamboo[J].Journal of Beijing Foresity University,2010,32(3):166-169.
[4] 田根林,马欣欣,吕黄飞,等.溶胶凝胶法制备超疏水竹材[J].东北林业大学学报,2015(2):84-86.Tian Genlin,Ma Xinxin,Lü Huangfei,et al.Super-hydrophobic prepara-tion for bamboo by sol-gel progress[J].Journal of Northeast Foresity Uni-versity,2015(2):84-86.
[5] 邱宇辰,刘克松,江雷.花生叶表面的高黏附超疏水特性研究及其仿生制备[J].中国科学:化学,2011,41(2):403-408.Qiu Yuchen,Liu Kesong,Jiang Lei.Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials[J].Scientia Sinica:Chimica,2011,41(2):403-408.
[6] 江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007.Jiang Lei,Feng Lin.Bioinspired intelligent nanostructured interfacial materials[M].Beijing:Chemical Industry Press,2007.
[7] 王女,赵勇,江雷.受生物启发的多尺度微/纳米结构材料[J].高等学校化学学报,2011,32(3):421-428.Wang Nü,Zhao Yong,Jiang Lei.Bioinspired hierarchical micro/nanostructure materials[J].Chemical Tournal of Chinese Universities,2011,32(3):421-428.
[8] Marmur A.The lotus effect:Superhydrophobicity and metastability[J].Langmuir,2004,20(9):3517-3519.
[9] Gao L,McCarthy T J. "Artificial lotus leaf" prepared using a 1945 patent and a commercial textile[J].Langmuir,2006,22(14):5998-6000.
[10] Erbil H Y,Demirel A L,Avcı Y,et al.Transformation of a simple plastic into a superhydrophobic surface[J].Science,2003,299(5611):1377-1380.
[11] Jiang L,Zhao Y,Zhai J.A lotus-leaf-like superhydrophobic surface:A porous microsphere/nanofiber composite film prepared by electrohydro-dynamics[J].Angewandte Chemie,2004,116(33):4438-4441.
[12] Xie Q,Fan G,Zhao N,et al.Facile creation of a bionic superhydrophobic block copolymer surface[J].Advanced Materials,2004,16(4):302-305.
[13] Feng X,Zhai J,Jiang L.The fabrication and switchable superhydropho-bicity of TiO2 nanorod films[J].Angewandte Chemie International Edi-tion,2005,44(32):5115-5118.
[14] Onda T,Shibuichi S,Satoh N,et al.Super-water-repellent fractal surfaces[J].Langmuir,1996,12(9):2125-2127.
[15] Ma M.,Hill R M.,Lowery J L,et al.Electrospun poly(styrene-blockdimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity[J].Langmuir,2005,21(12):5549-5554.
[16] 粟常红,肖怡,崔喆,等.一种多尺度仿生超疏水表面制备[J].无机化学学报,2006,22(5):785-788.Su Changhong,Xiao Yi,Cui Zhe,et al.A simple way to fabricate multidimension bionic super-hydrophobic surface[J].Chinese Journal of Inorganic Chemistry,2006,22(5):785-788.
[17] Huang L,Lau S,Yang H,et al.Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film[J].The Journal of Physical Chemistry B,2005,109(16):7746-7748.
[18] 赵小力,董申,于海涛.软印刷技术业界快讯[J].微纳电子技术,2006,43(1):55-63.Zhao Xiaoli,Dong Shen,Yu Haitao.Soft lithography[J].Micronanoelec-tronic Technology,2006,43(1):55-63.
[19] Xia Y,Whitesides G M.Soft lithography[J].Annual Review of Materials Science,1998,28(153):153-184.
[20] Gates B D,Whitesides G M.Replication of vertical features smaller than 2nm by soft lithography[J].Journal of the American Chemical Society,2003,125(49):14986-14987.
文章导航

/