专题论文

基于纳米铁的类Fenton法降解水中的三氯生

  • 李冠清 ,
  • 温颖新 ,
  • 王学军 ,
  • 程荣 ,
  • 李洁
展开
  • 中国人民大学环境学院, 北京 100872
李冠清,硕士研究生,研究方向为纳米材料在水处理中的应用,电子信箱:liguanqing@sohu.com

收稿日期: 2016-09-01

  修回日期: 2016-10-10

  网络出版日期: 2016-12-13

基金资助

国家自然科学基金项目(51108454);中央高校基本科研业务费专项(14XNLQ02)

Removal of triclosan in water with nanoscale zero-valent ironbased Fenton-like system

  • LI Guanqing ,
  • WEN Yingxin ,
  • WANG Xuejun ,
  • CHENG Rong ,
  • LI Jie
Expand
  • School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

Received date: 2016-09-01

  Revised date: 2016-10-10

  Online published: 2016-12-13

摘要

作为一种广泛存在的典型药品及个人护理品,三氯生(TCS)给生态环境和人体健康带来了潜在的威胁。以三氯生为目标污染物,采用实验室自行设计合成的零价纳米铁作为类Fenton试剂,研究了类Fenton法对三氯生的降解过程。单因素实验结果表明,三氯生的去除率随着纳米铁投加量和双氧水浓度的增加而增加;在溶液pH值为3时去除率最高;三氯生的初始浓度对去除率的影响不太明显。动力学分析表明三氯生的降解反应符合二级反应。在相同实验条件下,类Fenton试剂对三氯生的去除率明显优于传统Fenton试剂和单独投加纳米铁的体系。

本文引用格式

李冠清 , 温颖新 , 王学军 , 程荣 , 李洁 . 基于纳米铁的类Fenton法降解水中的三氯生[J]. 科技导报, 2016 , 34(22) : 32 -36 . DOI: 10.3981/j.issn.1000-7857.2016.22.003

Abstract

Triclosan (TCS), a kind of widely used pharmaceuticals and personal care products (PPCPs), poses a significant threat to ecoenvironment and human beings. This paper studies the Fenton-like degradation of TCS with the nanoscale zero-valent iron (nZVI). According to the single-factor experiments, the removal efficiency of TCS is increased with the increase of nZVI dosage and H2O2 concentration. And the removal efficiency reaches the highest when the pH value is 3. However, the initial concentration of the TCS had no obvious effect on the removal, and the results demonstrate that the degradation of the TCS follows the second-order kinetics. In addition, the nZVI-based Fenton-like system can achieve the highest removal efficiency under the same experimental conditions, as compared to the traditional Fenton reagent and nZVI alone.

参考文献

[1] Darius S, Simon F W, Armin H, et al. Environmental fate of triclosan in the River Aire Basin, UK[J]. Water Research, 2003, 37(13):3145-3154.
[2] Donna M, Drew M, Bert S, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX)[J]. Chemosphere, 2004, 54(5):653-660.
[3] Hu A, Wen Y, Erin R B, et al. Triclosan in waste and surface waters from the upper Detroit River by liquid chromatography-electrospraytandem quadrupole mass speetrometry[J]. Environmental International, 2005, 31(5):621-630.
[4] Wu J L, Lama N P, Dieter M, et al. Triclosan determination in water re-lated to wastewater treatment[J]. Talanta, 2007, 72(5):1650-1654.
[5] 李林朋, 马慧敏, 胡俊杰, 等. 三氯生和三氯卡班对人体干细胞DNA损伤的研究[J]. 生态环境学报, 2010, 19(12):2897-2901. Li Linpeng, Ma Huimin, Hu Junjie, et al. The genotoxicity of triclosan and triclocarban in human hepatocyte L02 cell[J].Ecology and Environ-mental Sciences, 2010, 19(12):2897-2901.
[6] Cinaglia C, Cascone C, Giudicer R L, et al. Application of methods for assessing the geno-and cytotoxicity of triclosan to C-ehrenbergii[J]. Journal of Hazardous Materials, 2005, 122(3):227-23.
[7] Foran C, Bennett E, Benson W. Development evaluation of a potential non-steroidal estrogen:Triclosan[J]. Marine Environmental Research, 2000, 50:153-156.
[8] Milagros M, Gomez M J, Imma F, et al, Evience of 2,7/2,8-dibenzodi-chlorop-dioxin as a photodegration product of triclosan in water and wastewater samples[C]. Spain:Analytica Chemical Acta, 2004, 524(1):241-247
[9] Wfiss E M, Rulek L, Vikesland P J. Formation of chloroform and other chlorinated by products by chlorination of triclosan-containing antibac-terials products[J]. Environmental Science and Technology, 2007, 41(7):2387-2394.
[10] Cheng R, Wang J L, Zhang, W X. Comparison of reductive dechlorina-tion of p-chlorophenol using Fe0 and nanosized Fe0[J]. Journal of Haz-ardous Materials, 2007, 144(1-2):334-339.
[11] 高燕飞, 高乃云. 纳米铁及其改性材料在水处理中的应用[J].给水排水. 2011, 37(1):108-113. Gao Yanfei, Gao Naiyun. Application of nanoscale iron and its modi-fied materials on water treatment[J]. Water & Wastewater Engineering, 2011, 37(1):108-113.
[12] Babuponnusami A, Muthukumar K. Removal of phenol by heteroge-nous photo electro Fenton-like process using nano-zero valent iron[J]. Separation and Purification Technology, 2012, 98:130-135.
[13] Yin K, Lo IMC, Dong H, et al. Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments:Aggre-gation, sedimentation, and contaminant desorption[J]. Journal of Haz-ardous Materials, 2012, 227:118-125.
[14] 李任超, 查双兴, 金晓英, 等. 纳米铁系金属制剂用于类Fenton氧化降解2,4-二氯苯酚[J]. 福建师范大学(自然科学版), 2013, 29(4):57-64. Li Renchao, Zha Shuangxing, Jin Xiaoying, et al. Fenton-like oxida-tion of 2,4-DCP in aqueous solution using iron-based nanoparticles[J]. Journal of Fujian Normal University:Natural Science Edition, 2013, 29(4):57-64.
[15] 陈传好, 谢波, 任源, 等. Fenton试剂处理废水中各影响因子的作用机制[J]. 环境科学, 2000, 21(3):93-96. Chen Chuanhao, Xie Bo, Ren Yuan, et al. The mechanisms of affect-ing factors in treating wastewater by Fenton reagent[J]. Environmental Science, 2000, 21(3):93-96.
[16] 李宏, 史巍, 刘治林. Fenton试剂法处理青霉素废水[J]. 环境科学与管理, 2007, 32(8):104-105. Li Hong, Shi Wei, Liu Zhilin. Treatment of penicillin wastewater by Fenton' s reagent[J]. Environmental Science and Management, 2007, 32(8):104-105.
[17] Chen Z L, Cao G Q, Song Q J. Photo-polymerization of triclosan in aqueous solution induced by ultraviolet radiation[J]. Environmental Chemistry Letters, 2010, 8(1):33-37.
[18] 周生辉, 王菲凤, 李青松, 等. KMnO4-PAC联用工艺去除水中三氯生及其降解机理研究[J]. 福建师范大学(自然科学版), 2013, 29(6):100-105. Zhou Shenghui, Wang Feifeng, Li Qingsong, et al. Research on the degradation mechanism of triclosan removal technology by combining potassium permanganate and powder activated carbon[J]. Journal of Fu-jian Normal University:Natural Science Edition, 2013, 29(6):100-105.
[19] Munoz M, de Pedro Z M, Casas J A, et al. Triclosan breakdown by Fenton-like oxidation[J]. Chemical Engineering Journal, 2012, 198:275-281.
文章导航

/