[1] Vodyanoy V J, Daniels Y, Pustovyy O, et al. Engineered metal nanopar-ticles in the sub-nanomolar levels kill cancer cells[J]. International Journal of Nanomedicine, 2016, 11:1567-1576.
[2] Benn T M, Westerhoff P, Herckes P. Detection of fullerenes (C60 and C70) in commercial cosmetics[J]. Environmental Pollution, 2011, 159(5):1334-1342.
[3] Mohamud R, Xiang S D, Selomulya C, et al. The effects of engineered nanoparticles on pulmonary immune homeostasis[J]. Drug Metabolism Reviews, 2014, 46(2):176-190.
[4] Pacurari M, Lowe K, Tchounwou P, et al. A Review on the Respiratory System Toxicity of Carbon Nanoparticles[J]. International Journal of En-vironmental Research and Public Health, 2016, 13(3):325.
[5] 薄洋,金承钰. 纳米颗粒对细胞亚结构的影响[J]. 实验室研究与探索, 2013(10):308-311. Bo Yang, Jin Chengyu. Influence of nanoparticles on subcellular struc-ture. Research and Exploration in Laboratory, 2013(10):308-311.
[6] Troester M, Brauch H, Hofmann T. Vulnerability of drinking water sup-plies to engineered nanoparticles[J]. Water Research, 2016, 96:255-279.
[7] Tiede K, Hanssen S F, Westerhoff P, et al. How important is drinking water exposure for the risks of engineered nanoparticles to consumers[J]. Nanotoxicology, 2016, 10(1):1-9.
[8] Chang M R, Lee D J, Lai J Y. Nanoparticles in wastewater from a sci-ence-based industrial park-Coagulation using polyaluminum chloride[J]. Journal of Environmental Management, 2007, 85(4):1009-1014.
[9] Zhang M, Guiraud P. Elimination of TiO2 nanoparticles with the assist of humic acid:Influence of agglomeration in the dissolved air flotation process[J]. Journal of Hazardous Materials, 2013, 260:122-130.
[10] Lien C Y, Liu J C. Treatment of Polishing Wastewater from Semicon-ductor Manufacturer by Dispersed Air Flotation[J]. Journal of Environ-mental Engineering, 2006, 132(1):51-57.
[11] Jing H, Mezgebe B, Aly Hassan A, et al. Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms[J]. Biore-source Technology, 2014, 161:109-117.
[12] Kiser M A, Ryu H, Jang H, et al. Biosorption of nanoparticles to het-erotrophic wastewater biomass[J]. Water Research, 2010, 44(14):4105-4114.
[13] Li D, Li B, Wang Q, et al. Toxicity of TiO2 nanoparticle to denitrifying strain CFY1 and the impact on microbial community structures in acti-vated sludge[J]. Chemosphere, 2016, 144:1334-1341.
[14] Liang Z, Das A, Hu Z. Bacterial response to a shock load of nanosil-ver in an activated sludge treatment system[J]. Water Research, 2010, 44(18):5432-5438.
[15] 刘振中, 邓慧萍, 陈战利. 纳米颗粒的危害及在水体中的去除研究进展[J]. 安全与环境学报, 2015(04):272-277. Liu Zhenzhong, Deng Huiping, Chen Zhanli. Hazard and removal of nanoparticles in aqueous system[J]. Journal of Safety and Environ-ment, 2015(04):272-277.
[16] Floris R, Nijmeijer K, Cornelissen E R. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration[J]. Water Re-search, 2016, 91:115-125.
[17] Yin G, Zheng Z, Wang H, et al. Slightly surface-functionalized poly-styrene microspheres prepared via Pickering emulsion polymerization using for electrophoretic displays[J]. Journal of Colloid and Interface Science, 2011, 361(2):456-464.
[18] Wang T, Keddie J L. Design and fabrication of colloidal polymer nano-composites[J]. Advances in Colloid and Interface Science, 2009, 147-148:319-332.
[19] Nomura T, Miyazaki J, Miyamoto A, et al. Exposure of the Yeast Sac-charomyces cerevisiae to functionalized polystyrene latex nanoparti-cles:Influence of surface charge on toxicity[J]. Environmental Science & Technology, 2013, 47:3417-3423.
[20] Paget V, Dekali S, Kortulewski T, et al. Specific uptake and genotoxic-ity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages[J]. Plos One, 2015, 10(4):e123297.
[21] Ferry J D. Statistical evaluation of sieve constants in ultrafiltraton[J]. Journal of General Physiology, 1936:95-104.
[22] Verniory A, Dubois R, Decoodt P, et al. Measurement of the permea-bility of biological membranes application to the glomerular wall[J]. The Journal of General Physiology, 1973, 62:489-507.
[23] Nakao S, Kimura S. Analysis of solutes rejection in ultrafiltration[J]. Journal of Chemical Engineering, 1981, 14(1):34-37.
[24] Pavanasam A K, Abbas A, Chen V. Influence of particle size and oper-ating parameters on virus ultrafiltration efficiency[J]. Water Science & Technology:Water Supply, 2011, 11(1):31.
[25] Herath G, Yamamoto K, Urase T. The effect of suction velocity on con-centration polarization in microfiltration membranes under turbulent flow conditions[J]. Journal of Membrane Science, 2000, 169:175-183.
[26] Hwang K, Sz P. Effect of membrane pore size on the performance of cross-flow microfiltration of BSA/dextran mixtures[J]. Journal of Mem-brane Science, 2011, 378(1-2):272-279.
[27] 罗鸣,尚闽,郑祥. 蛋白截留法评价超滤膜分离性能研究[J]. 膜科学与技术, 2014(6):56-61. Luo Ming, Shang Min, Zheng Xiang. Discussion about assessment of ultrafitration membranes retention performance by seprating protein method[J]. Membrane Science and Technology, 2014(6):56-61.
[28] Ladner D A, Steele M, Weir A, et al. Functionalized nanoparticle in-teractions with polymeric membranes[J]. Journal of Hazardous Materi-als, 2012, 211-212(2):288-295.
[29] Jassby D, Chae S, Hendren Z, et al. Membrane filtration of fullerene nanoparticle suspensions:Effects of derivatization, pressure, electro-lyte species and concentration[J]. Journal of Colloid and Interface Sci-ence, 2010, 346(2):296-302.
[30] Chen S, Segets D, Ling T, et al. An experimental study of ultrafiltra-tion for sub-10 nm quantum dots and sub-150 nm nanoparticles through PTFE membrane and nuclepore filters[J]. Journal of Mem-brane Science, 2016, 497:153-161.