专题论文

超微滤膜去除工程纳米粒子的可行性——以聚苯乙烯纳米颗粒为例

  • 刘丽 ,
  • 尚闽 ,
  • 佃柳 ,
  • 罗鸣 ,
  • 郑祥
展开
  • 中国人民大学环境学院, 北京 100872
刘丽,硕士研究生,研究方向为膜分离技术,电子信箱:18811791618@163.com

收稿日期: 2016-09-01

  修回日期: 2016-10-06

  网络出版日期: 2016-12-13

基金资助

中央高校基本科研业务费专项(10XNJ023)

Feasibility of removing engineered nanoparticles by hollow fiber UF/MF membrane: Case of polystyrene nanoparticles

  • LIU Li ,
  • SHANG Min ,
  • DIAN Liu ,
  • LUO Ming ,
  • ZHENG Xiang
Expand
  • School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China

Received date: 2016-09-01

  Revised date: 2016-10-06

  Online published: 2016-12-13

摘要

工程纳米粒子的广泛应用导致其直接或间接进入水环境,对生物和人类造成健康风险。为研究超微滤膜去除水体中工程纳米粒子的可行性,选用3种不同孔径的中空纤维膜对聚苯乙烯纳米颗粒进行截留,并系统考查膜对聚苯乙烯纳米颗粒的去除效果及影响因素。研究结果表明:超微滤膜能够有效去除水体中工程纳米粒子。在进水压力25~125 kPa、进水切线流速0.12~0.59 m·s-1,以及纳米颗粒质量浓度在25~100 mg·L-1之间,超滤膜对聚苯乙烯纳米颗粒的截留率均在90%以上;压力与纳米颗粒物质量浓度的提高导致膜对聚苯乙烯的截留率也相应提高,而进水流速对截留率的影响不明显。纳米颗粒粒径与膜孔径的比在小于1时,对截留率影响较大,膜分离10 min时的实验截留率值与Nakao模型预测值较接近。

本文引用格式

刘丽 , 尚闽 , 佃柳 , 罗鸣 , 郑祥 . 超微滤膜去除工程纳米粒子的可行性——以聚苯乙烯纳米颗粒为例[J]. 科技导报, 2016 , 34(22) : 37 -42 . DOI: 10.3981/j.issn.1000-7857.2016.22.004

Abstract

Wide applications of engineered nanoparticles (eNPs) have potential environmental and health risks. This paper focuses on the removal of polystyrene nanoparticles by hollow fiber membranes of three different pore sizes. The effects of the running time, the inflow pressure, the flow rate, the concentration and the particle to pore diameter ratio are investigated. The results show that it is feasible to remove the eNPs by the UF/MF membrane. The retention rate is stable and there are no obvious differences after the filtration of the UF membrane for 10 minutes. The retention rate increases when the inflow pressure increases from 25 kPa to 125 kPa, the concentration increases from 25 to 100 mg·L-1, but no obvious variation when the flow rate increases from 0.12 to 0.59 m·s-1. The retention rate is influenced when the particle to pore diameter ratio is less than 1. The retention rate at 10 min is very close to the value predicted by the Nakao model.

参考文献

[1] Vodyanoy V J, Daniels Y, Pustovyy O, et al. Engineered metal nanopar-ticles in the sub-nanomolar levels kill cancer cells[J]. International Journal of Nanomedicine, 2016, 11:1567-1576.
[2] Benn T M, Westerhoff P, Herckes P. Detection of fullerenes (C60 and C70) in commercial cosmetics[J]. Environmental Pollution, 2011, 159(5):1334-1342.
[3] Mohamud R, Xiang S D, Selomulya C, et al. The effects of engineered nanoparticles on pulmonary immune homeostasis[J]. Drug Metabolism Reviews, 2014, 46(2):176-190.
[4] Pacurari M, Lowe K, Tchounwou P, et al. A Review on the Respiratory System Toxicity of Carbon Nanoparticles[J]. International Journal of En-vironmental Research and Public Health, 2016, 13(3):325.
[5] 薄洋,金承钰. 纳米颗粒对细胞亚结构的影响[J]. 实验室研究与探索, 2013(10):308-311. Bo Yang, Jin Chengyu. Influence of nanoparticles on subcellular struc-ture. Research and Exploration in Laboratory, 2013(10):308-311.
[6] Troester M, Brauch H, Hofmann T. Vulnerability of drinking water sup-plies to engineered nanoparticles[J]. Water Research, 2016, 96:255-279.
[7] Tiede K, Hanssen S F, Westerhoff P, et al. How important is drinking water exposure for the risks of engineered nanoparticles to consumers[J]. Nanotoxicology, 2016, 10(1):1-9.
[8] Chang M R, Lee D J, Lai J Y. Nanoparticles in wastewater from a sci-ence-based industrial park-Coagulation using polyaluminum chloride[J]. Journal of Environmental Management, 2007, 85(4):1009-1014.
[9] Zhang M, Guiraud P. Elimination of TiO2 nanoparticles with the assist of humic acid:Influence of agglomeration in the dissolved air flotation process[J]. Journal of Hazardous Materials, 2013, 260:122-130.
[10] Lien C Y, Liu J C. Treatment of Polishing Wastewater from Semicon-ductor Manufacturer by Dispersed Air Flotation[J]. Journal of Environ-mental Engineering, 2006, 132(1):51-57.
[11] Jing H, Mezgebe B, Aly Hassan A, et al. Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms[J]. Biore-source Technology, 2014, 161:109-117.
[12] Kiser M A, Ryu H, Jang H, et al. Biosorption of nanoparticles to het-erotrophic wastewater biomass[J]. Water Research, 2010, 44(14):4105-4114.
[13] Li D, Li B, Wang Q, et al. Toxicity of TiO2 nanoparticle to denitrifying strain CFY1 and the impact on microbial community structures in acti-vated sludge[J]. Chemosphere, 2016, 144:1334-1341.
[14] Liang Z, Das A, Hu Z. Bacterial response to a shock load of nanosil-ver in an activated sludge treatment system[J]. Water Research, 2010, 44(18):5432-5438.
[15] 刘振中, 邓慧萍, 陈战利. 纳米颗粒的危害及在水体中的去除研究进展[J]. 安全与环境学报, 2015(04):272-277. Liu Zhenzhong, Deng Huiping, Chen Zhanli. Hazard and removal of nanoparticles in aqueous system[J]. Journal of Safety and Environ-ment, 2015(04):272-277.
[16] Floris R, Nijmeijer K, Cornelissen E R. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration[J]. Water Re-search, 2016, 91:115-125.
[17] Yin G, Zheng Z, Wang H, et al. Slightly surface-functionalized poly-styrene microspheres prepared via Pickering emulsion polymerization using for electrophoretic displays[J]. Journal of Colloid and Interface Science, 2011, 361(2):456-464.
[18] Wang T, Keddie J L. Design and fabrication of colloidal polymer nano-composites[J]. Advances in Colloid and Interface Science, 2009, 147-148:319-332.
[19] Nomura T, Miyazaki J, Miyamoto A, et al. Exposure of the Yeast Sac-charomyces cerevisiae to functionalized polystyrene latex nanoparti-cles:Influence of surface charge on toxicity[J]. Environmental Science & Technology, 2013, 47:3417-3423.
[20] Paget V, Dekali S, Kortulewski T, et al. Specific uptake and genotoxic-ity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages[J]. Plos One, 2015, 10(4):e123297.
[21] Ferry J D. Statistical evaluation of sieve constants in ultrafiltraton[J]. Journal of General Physiology, 1936:95-104.
[22] Verniory A, Dubois R, Decoodt P, et al. Measurement of the permea-bility of biological membranes application to the glomerular wall[J]. The Journal of General Physiology, 1973, 62:489-507.
[23] Nakao S, Kimura S. Analysis of solutes rejection in ultrafiltration[J]. Journal of Chemical Engineering, 1981, 14(1):34-37.
[24] Pavanasam A K, Abbas A, Chen V. Influence of particle size and oper-ating parameters on virus ultrafiltration efficiency[J]. Water Science & Technology:Water Supply, 2011, 11(1):31.
[25] Herath G, Yamamoto K, Urase T. The effect of suction velocity on con-centration polarization in microfiltration membranes under turbulent flow conditions[J]. Journal of Membrane Science, 2000, 169:175-183.
[26] Hwang K, Sz P. Effect of membrane pore size on the performance of cross-flow microfiltration of BSA/dextran mixtures[J]. Journal of Mem-brane Science, 2011, 378(1-2):272-279.
[27] 罗鸣,尚闽,郑祥. 蛋白截留法评价超滤膜分离性能研究[J]. 膜科学与技术, 2014(6):56-61. Luo Ming, Shang Min, Zheng Xiang. Discussion about assessment of ultrafitration membranes retention performance by seprating protein method[J]. Membrane Science and Technology, 2014(6):56-61.
[28] Ladner D A, Steele M, Weir A, et al. Functionalized nanoparticle in-teractions with polymeric membranes[J]. Journal of Hazardous Materi-als, 2012, 211-212(2):288-295.
[29] Jassby D, Chae S, Hendren Z, et al. Membrane filtration of fullerene nanoparticle suspensions:Effects of derivatization, pressure, electro-lyte species and concentration[J]. Journal of Colloid and Interface Sci-ence, 2010, 346(2):296-302.
[30] Chen S, Segets D, Ling T, et al. An experimental study of ultrafiltra-tion for sub-10 nm quantum dots and sub-150 nm nanoparticles through PTFE membrane and nuclepore filters[J]. Journal of Mem-brane Science, 2016, 497:153-161.
文章导航

/