专题论文

锂离子电池负极材料力学行为研究进展

  • 杨辉 ,
  • 曲建民
展开
  • 美国塔夫茨大学机械工程系, 马萨诸塞州梅德福 02155, 美国
杨辉,博士后,研究方向为新兴能源材料力学,电子信箱:Hui.Yang@tufts.edu

收稿日期: 2016-08-08

  修回日期: 2016-08-15

  网络出版日期: 2016-12-28

基金资助

美国国家科学基金项目(CMMI-1624313)

Advance in lithiation mechanics of anode materials in lithium ion battery

  • YANG Hui ,
  • QU Jianmin
Expand
  • Department of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, United States

Received date: 2016-08-08

  Revised date: 2016-08-15

  Online published: 2016-12-28

摘要

可充电锂离子电池被广泛应用于便携式电子设备、电动汽车等领域。随着其应用领域的快速发展,迫切需要进一步提高其能量密度。本文综述对目前广泛研究的高能量密度负极材料(如硅、锗)在充/放电过程中力学行为的研究进展;基于最新实验手段及数值模拟方法,介绍负极材料由于电化学-力学耦合所造成的变形和破坏,并讨论相关技术在其他电池系统研究中的应用。

本文引用格式

杨辉 , 曲建民 . 锂离子电池负极材料力学行为研究进展[J]. 科技导报, 2016 , 34(23) : 88 -98 . DOI: 10.3981/j.issn.1000-7857.2016.23.009

Abstract

Rechargeable lithium-ion batteries (LIBs), due to their high energy density and design flexibility, are the most prevailing and promising electrochemical energy storage and conversion devices, and are being widely used in portable electronics and electric vehicles. However, with their wide range applications, an urgent requirement is raised for the further improvement of their energy density. This paper presents an overview of recent advances in understanding the mechanical behavior of high capacity anode materials, i.e., silicon and germanium, in their charging/discharging cycling. Particular emphasis is placed on the state-of-the-art experimental and numerical studies of the deformation and failure of anode materials caused by the electrochemo-mechanical coupling. In addition, possible extension of current techniques to the research of other energy systems is discussed.

参考文献

[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithi um batteries[J]. Nature, 2001, 414(6861):359-367.
[2] Kamali A R, Fray D J. Review on carbon and silicon based materials as anode materials for lithium ion batteries[J]. Journal of New Materials for Electrochemical Systems, 2010, 13(2):147-160.
[3] Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1):13-24.
[4] Takada K. Progress and prospective of solid-state lithium batteries[J]. Ac ta Materialia, 2013, 61(3):759-770.
[5] Service R F. Getting there[J]. Science, 2011, 332(6037):1494-1496.
[6] Hayner C M, Zhao X, Kung H H. Materials for rechargeable lithium-ion batteries[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3(1):445-471.
[7] Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion bat teries:A review[J]. Advanced Energy Materials, 2014, 4(1):1300882.
[8] Tarascon J M. Key challenges in future Li-battery research[J]. Philosophi cal Transactions of the Royal Society A:Mathematical Physical and Engi neering Sciences, 2010, 368(1923):3227-3241.
[9] Larcher D, Beattie S, Morcrette M, et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries[J]. Jour nal of Materials Chemistry, 2007, 17(36):3759-3772.
[10] Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters, 2004, 7(5):A93-A96.
[11] Liu X H, Zhang L Q, Zhong L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Letters, 2011, 11(6):2251-2258.
[12] Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practi cal lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27):9938-9954.
[13] Neumann G, Würsig A. Lithium storage in silicon[J]. Physica Status Soli di:Rapid Research Letters, 2010, 4(1-2):A21-A23.
[14] Chao S C, Song Y F, Wang C C, et al. Study on microstructural deforma tion of working Sn and SnSb anode particles for Li-ion batteries by in si tu transmission X-ray microscopy[J]. Journal of Physical Chemistry C, 2011, 115(44):22040-22047.
[15] Chao S C, Yen Y C, Song Y F, et al. A study on the interior microstruc tures of working Sn particle electrode of Li-ion batteries by in situ Xray transmission microscopy[J]. Electrochemistry Communications, 2010, 12(2):234-237.
[16] Wang J, Fan F, Liu Y, et al. Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling[J]. Journal of The Electrochemical Society, 2014, 161(11):F3019-F3024.
[17] Liang W, Yang H, Fan F, et al. Tough germanium nanoparticles under electrochemical cycling[J]. Acs Nano, 2013, 7(4):3427-3433.
[18] Gu M, Yang H, Perea D E, et al. Bending-induced symmetry breaking of lithiation in germanium nanowires[J]. Nano Letters, 2014, 14(8):4622-4627.
[19] Liu X H, Zheng H, Zhong L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8):3312-3318.
[20] Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible vol ume changes in lithium alloys[J]. Electrochemical and Solid State Let ters, 2001, 4(9):A137-A140.
[21] Ryu J H, Kim J W, Sung Y E, et al. Failure modes of silicon powder neg ative electrode in lithium secondary batteries[J]. Electrochemical and Solid-State Letters, 2004, 7(10):A306-A309.
[22] Maranchi J P, Hepp A F, Evans A G, et al. Interfacial properties of the a-Si/Cu:Active-inactive thin-film anode system for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(6):A1246-A1253.
[23] Kasavajjula U, Wang C S, Appleby A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources, 2007, 163(2):1003-1039.
[24] Cui L F, Hu L B, Choi J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. Acs Nano, 2010, 4(7):3671-3678.
[25] Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electro chemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520.
[26] Goldman J L, Long B R, Gewirth A A, et al. Strain anisotropies and selflimiting capacities in single-crystalline 3D silicon microstructures:Mod els for high energy density lithium-ion battery anodes[J]. Advanced Functional Materials, 2011, 21(13):2412-2422.
[27] Lee S W, McDowell M T, Berla L A, et al. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11):4080-4085.
[28] Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. Acs Nano, 2012, 6(2):1522-1531.
[29] Lee S W, Ryu I, Nix W D, et al. Fracture of crystalline germanium dur ing electrochemical lithium insertion[J]. Extreme Mechanics Letters, 2015(2):15-19.
[30] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for ad vanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5):366-377.
[31] Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(23):2878-2887.
[32] Szczech J R, Jin S. Nanostructured silicon for high capacity lithium bat tery anodes[J]. Energy & Environmental Science, 2011, 4(1):56-72.
[33] Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostruc tured anode materials for rechargeable lithium-ion batteries[J]. Energy and Environmental Science, 2011, 4(8):2682-2699.
[34] Chan C K, Peng H L, Liu G, et al. High-performance lithium battery an odes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35.
[35] Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowires[J]. Nano Letters, 2008, 8(1):307-309.
[36] Rolison D R, Nazar L F. Electrochemical energy storage to power the 21st century[J]. Mrs Bulletin, 2011, 36(7):486-493.
[37] Choi N S, Yao Y, Cui Y, et al. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials[J]. Journal of Ma terials Chemistry, 2011, 21(27):9825-9840.
[38] Lee S W, McDowell M T, Choi J W, et al. Anomalous Shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters, 2011, 11(7):3034-3039.
[39] Liu N, Hu L, McDowell M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. Acs Nano, 2011, 5(8):6487-6493.
[40] Liu X H, Huang S, Picraux S T, et al. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling:An in situ transmis sion electron microscopy study[J]. Nano Letters, 2011, 11(9):3991-3997.
[41] Park M H, Kim M G, Joo J, et al. Silicon nanotube battery anodes[J]. Na no Letters, 2009, 9(11):3844-3847.
[42] Song T, Xia J, Lee J-H, et al. Arrays of sealed silicon nanotubes as an odes for lithium ion batteries[J]. Nano Letters, 2010, 10(5):1710-1716.
[43] Liu Y, Zheng H, Liu X H, et al. Lithiation-induced embrittlement of mul tiwalled carbon nanotubes[J]. ACS Nano, 2011, 5(9):7245-7253.
[44] Ma H, Cheng F Y, Chen J, et al. Nest-like silicon nanospheres for highcapacity lithium storage[J]. Advanced Materials, 2007, 19(22):4067-4070.
[45] Choi H S, Lee J G, Lee H Y, et al. Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries[J]. Electrochimica Acta, 2010, 56(2):790-796.
[46] Yao Y, McDowell M T, Ryu I, et al. Interconnected silicon hollow nano spheres for lithium-ion battery anodes with long cycle life[J]. Nano Let ters, 2011, 11(7):2949-2954.
[47] McDowell M T, Ryu I, Lee S W, et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron micros copy[J]. Advanced Materials, 2012, 24(45):6034-6041.
[48] Wang J W, Liu X H, Mao S X, et al. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction[J]. Nano Let ters, 2012, 12(11):5897-5902.
[49] McDowell M T, Lee S W, Harris J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13(2):758-764.
[50] Wang J W, He Y, Fan F, et al. Two-phase electrochemical lithiation in amorphous silicon[J]. Nano Letters, 2013, 13(2):709-715.
[51] Maranchi J P, Hepp A F, Kumta P N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2003, 6(9):A198-A201.
[52] Nadimpalli S P V, Sethuraman V A, Bucci G, et al. On plastic deforma tion and fracture in Si films during electrochemical lithiation/delithiation cycling[J]. Journal of the Electrochemical Society, 2013, 160(10):A1885-A1893.
[53] Cui L F, Ruffo R, Chan C K, et al. Crystalline-amorphous core-shell sili con nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2009, 9(1):491-495.
[54] Huang R, Fan X, Shen W C, et al. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes[J]. Applied Phys ics Letters, 2009, 95(13):133119.
[55] Chen H X, Dong Z X, Fu Y P, et al. Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2010, 14(10):1829-1834.
[56] Hertzberg B, Alexeev A, Yushin G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space[J]. Journal of the Amer ican Chemical Society, 2010, 132(25):8548-8549.
[57] Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanopar ticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. Acs Nano, 2010, 4(6):3187-3194.
[58] Zhang L Q, Liu X H, Liu Y, et al. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating[J]. Acs Nano, 2011, 5(6):4800-4809.
[59] Yi R, Dai F, Gordin M L, et al. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes[J]. Advanced Energy Materials, 2013:1507-1515.
[60] Sandu G, Brassart L, Gohy J F, et al. Surface coating mediated swelling and fracture of silicon nanowires during lithiation[J]. Acs Nano, 2014, 8(9):9427-9436.
[61] Liu X H, Huang J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10):3844-3860.
[62] Liu X H, Liu Y, Kushima A, et al. In situ TEM experiments of electro chemical lithiation and delithiation of individual nanostructures[J]. Ad vanced Energy Materials, 2012, 2(7):722-741.
[63] Liu X H, Wang J W, Huang S, et al. In situ atomic-scale imaging of elec trochemical lithiation in silicon[J]. Nature Nanotechnology, 2012, 7(11):749-756.
[64] Liu X H, Wang J W, Liu Y, et al. In situ transmission electron microsco py of electrochemical lithiation, delithiation and deformation of individu al graphene nanoribbons[J]. Carbon, 2012, 50(10):3836-3844.
[65] Sun C F, Karki K, Jia Z, et al. A beaded-string silicon anode[J]. Acs Na no, 2013, 7(3):2717-2724.
[66] Chon M J, Sethuraman V A, McCormick A, et al. Real-time measure ment of stress and damage evolution during initial lithiation of crystal line silicon[J]. Physical Review Letters, 2011, 107(4):045503.
[67] Liu X H, Fan F, Yang H, et al. Self-limiting lithiation in silicon nanow ires[J]. Acs Nano, 2012, 7(2):1495-1503.
[68] Berla L A, Lee S W, Ryu I, et al. Robustness of amorphous silicon dur ing the initial lithiation/delithiation cycle[J]. Journal of Power Sources, 2014, 258:253-259.
[69] Liang W, Hong L, Yang H, et al. Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling[J]. Nano Let ters, 2013, 13(11):5212-5217.
[70] Lee K T, Jung Y S, Kim T, et al. Liquid gallium electrode confined in po rous carbon matrix as anode for lithium secondary batteries[J]. Electro chemical and Solid State Letters, 2008, 11(3):A21-A24.
[71] Deshpande R D, Li J C, Cheng Y T, et al. Liquid metal alloys as selfhealing negative electrodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(8):A845-A849.
[72] Luo L, Yang H, Yan P, et al. Surface-coating regulated lithiation kinet ics and degradation in silicon nanowires for lithium ion battery[J]. Acs Nano, 2015, 9(5):5559-5566.
[73] Luo L, Zhao P, Yang H, et al. Surface coating constraint induced selfdischarging of silicon nanoparticles as anodes for lithium ion batteries[J]. Nano Letters, 2015, 15(10):7016-7022.
[74] Gu M, Li Y, Li X, et al. In situ TEM study of lithiation behavior of sili con nanoparticles attached to and embedded in a carbon matrix[J]. Acs Nano, 2012, 6(9):8439-8447.
[75] Lu X, Bogart T D, Gu M, et al. In situ TEM observations of Sn-contain ing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics[J]. The Journal of Physical Chemistry C, 2015, 119(38):21889-21895.
[76] Luo L, Wu J, Luo J, et al. Dynamics of electrochemical lithiation/delithia tion of graphene-encapsulated silicon nanoparticles studied by in-situ TEM[J]. Scientific Reports, 2014, 4(1):3863.
[77] Wang C M, Li X, Wang Z, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/car bon anode for lithium ion batteries[J]. Nano Letters, 2012, 12(3):1624-1632.
[78] Weker J N, Liu N, Misra S, et al. In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles[J]. Energy and Environmental Science, 2014, 7(8):2771-2777.
[79] Lee S W, Lee H W, Ryu I, et al. Kinetics and fracture resistance of lithi ated silicon nanostructure pairs controlled by their mechanical interac tion[J]. Nature Communications, 2015(6):7533.
[80] Aurbach D, Koltypin M, Teller H. In situ AFM imaging of surface phe nomena on composite graphite electrodes during lithium insertion[J]. Langmuir, 2002, 18(23):9000-9009.
[81] Becker C R, Strawhecker K E, McAllister Q P, et al. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lith ium ion batteries[J]. Acs Nano, 2013, 7(10):9173-9182.
[82] McAllister Q P, Strawhecker K E, Becker C R, et al. In situ atomic force microscopy nanoindentation of lithiated silicon nanopillars for lithium ion batteries[J]. Journal of Power Sources, 2014, 257(3):380-387.
[83] Berla L A, Lee S W, Cui Y, et al. Mechanical behavior of electrochemi cally lithiated silicon[J]. Journal of Power Sources, 2015, 273(0):41-51.
[84] Hertzberg B, Benson J, Yushin G. Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films[J]. Elec trochemistry Communications, 2011, 13(8):818-821.
[85] Wang X, Fan F, Wang J, et al. High damage tolerance of electrochemical ly lithiated silicon[J]. Nature Communications, 2015(6):8417.
[86] Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2010, 195(15):5062-5066.
[87] Pharr M, Suo Z, Vlassak J J. Measurements of the fracture energy of lithi ated silicon electrodes of Li-ion batteries[J]. Nano Letters, 2013, 13(11):5570-5577.
[88] Limthongkul P, Jang Y I, Dudney N J, et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage[J]. Acta Materialia, 2003, 51(4):1103-1113.
[89] Kang K, Lee H S, Han D W, et al. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery[J]. Applied Phys ics Letters, 2010, 96(5):053110.
[90] Cui Z, Gao F, Qu J. Two-phase versus two-stage versus multi-phase lithiation kinetics in silicon[J]. Applied Physics Letters, 2013, 103(14):143901.
[91] Chan M K Y, Long B R, Gewirth A A, et al. The first-cycle electrochemi cal lithiation of crystalline Ge:Dopant and orientation dependence and comparison with Si[J]. The Journal of Physical Chemistry Letters, 2011, 460(2):3092-3095.
[92] Chevrier V L, Dahn J R. First principles model of amorphous silicon lithiation[J]. Journal of the Electrochemical Society, 2009, 156(6):A454-A458.
[93] Chevrier V L, Dahn J R. First principles studies of disordered lithiated silicon[J]. Journal of the Electrochemical Society, 2010, 157(4):A392-A398.
[94] Fan X, Zheng W T, Kuo J L. Adsorption and diffusion of Li on pristine and defective graphene[J]. ACS Applied Materials & Interfaces, 2012, 4(5):2432-2438.
[95] Fan X, Zheng W T, Kuo J L, et al. Adsorption of single Li and the forma tion of small Li clusters on graphene for the anode of lithium-ion batter ies[J]. ACS Applied Materials & Interfaces, 2013, 5(16):7793-7797.
[96] Garay Tapia A M, Romero A H, Barone V. Lithium adsorption on gra phene:From isolated adatoms to metallic sheets[J]. Journal of Chemical Theory and Computation, 2012, 8(3):1064-1071.
[97] Kim H, Kweon K E, Chou C Y, et al. On the nature and behavior of Li at oms in Si:A first principles study[J]. The Journal of Physical Chemistry C, 2010, 114(41):17942-17946.
[98] Kubota Y, Escano M C S, Nakanishi H, et al. Crystal and electronic structure of Li15Si4[J]. Journal of Applied Physics, 2007, 102(5):053704.
[99] Kubota Y, Escano M C S, Nakanishi H, et al. Electronic structure of LiSi[J]. Journal of Alloys and Compounds, 2008, 458(1/2):151-157.
[100] Meunier V, Kephart J, Roland C, et al. Ab initio investigations of lithi um diffusion in carbon nanotube systems[J]. Physical Review Letters, 2002, 88(7):075506.
[101] Shenoy V B, Johari P, Qi Y. Elastic softening of amorphous and crystal line Li-Si phases with increasing Li concentration:A first-principles study[J]. Journal of Power Sources, 2010, 195(19):6825-6830.
[102] Stournara M E, Guduru P R, Shenoy V B. Elastic behavior of crystalline Li-Sn phases with increasing Li concentration[J]. Journal of Power Sources, 2012, 208(208):165-169.
[103] Wan W H, Zhang Q F, Cui Y, et al. First principles study of lithium in sertion in bulk silicon[J]. Journal of Physics-Condensed Matter, 2010, 22(41):415501.
[104] Zhang Q, Cui Y, Wang E. Anisotropic lithium insertion behavior in sili con nanowires:Binding energy, diffusion barrier, and strain effect[J]. The Journal of Physical Chemistry C, 2011, 115(19):9376-9381.
[105] Zhang Q F, Zhang W X, Wan W H, et al. Lithium insertion in silicon nanowires:An ab initio study[J]. Nano Letters, 2010, 10(9):3243-3249.
[106] Zhao K, Wang W L, Gregoire J, et al. Lithium-assisted plastic deforma tion of silicon electrodes in lithium-ion batteries:A first-principles theoretical study[J]. Nano Letters, 2011, 11(7):2962-2967.
[107] Zhou L J, Hou Z F, Wu L M. First-principles study of lithium adsorp tion and diffusion on graphene with point defects[J]. The Journal of Physical Chemistry C, 2012, 116(41):21780-21787.
[108] Chan M K Y, Wolverton C, Greeley J P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline sili con[J]. Journal of the American Chemical Society, 2012, 134(35):14362-14374.
[109] Chou C Y, Kim H, Hwang G S. A comparative first-principles study of the structure, energetics, and properties of Li-M (M=Si, Ge, Sn) alloys[J]. The Journal of Physical Chemistry C, 2011, 115(40):20018-20026.
[110] Cubuk E D, Kaxiras E. Theory of structural transformation in lithiated amorphous silicon[J]. Nano Letters, 2014, 14(7):4065-4070.
[111] Cubuk E D, Wang W L, Zhao K, et al. Morphological evolution of si nanowires upon lithiation:A first-principles multiscale model[J]. Nano Letters, 2013, 13(5):2011-2015.
[112] Cui Z, Gao F, Cui Z, et al. A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys[J]. Journal of Power Sourc es, 2012(207):150-159.
[113] Cui Z, Gao F, Cui Z, et al. Developing a second nearest-neighbor modi fied embedded atom method interatomic potential for lithium[J]. Model ling and Simulation in Materials Science and Engineering, 2012, 20(1):015014.
[114] Duin A C T V, Dasgupta S, Lorant F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41):9396-9409.
[115] Kim S P, Duin A C T V, Shenoy V B. Effect of electrolytes on the struc ture and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries:A molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20):8590-8597.
[116] Russo M F, Duin A C T V. Atomistic-scale simulations of chemical re actions:Bridging from quantum chemistry to engineering[J]. Nuclear Instruments and Methods in Physics Research Section B-Beam Interac tions with Materials and Atoms, 2011, 269(14):1549-1554.
[117] Yang H, Huang X, Liang W, et al. Self-weakening in lithiated gra phene electrodes[J]. Chemical Physics Letters, 2013, 563(0):58-62.
[118] Huang X, Yang H, Liang W, et al. Lithiation induced corrosive fracture in defective carbon nanotubes[J]. Applied Physics Letters, 2013, 103(15):153901.
[119] Fan F F, Huang S, Yang H, et al. Mechanical properties of amorphous LixSi alloys:A reactive force field study[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7):074002.
[120] Kim S P, Datta D, Shenoy V B. Atomistic mechanisms of phase bound ary evolution during initial lithiation of crystalline silicon[J]. Journal of Physical Chemistry C, 2014, 118(31):17247-17253.
[121] Liang T, Shin Y K, Cheng Y T, et al. Reactive potentials for advanced atomistic simulations[J]. Annual Review of Materials Research, 2013, 43(1):109-129.
[122] Ding B, Li X, Zhang X, et al. Brittle versus ductile fracture mechanism transition in amorphous lithiated silicon:From intrinsic nanoscale cavi tation to shear banding[J]. Nano Energy, 2015(18):89-96.
[123] An Y, Jiang H. A finite element simulation on transient large deforma tion and mass diffusion in electrodes for lithium ion batteries[J]. Model ling and Simulation in Materials Science and Engineering, 2013, 21(7):074007.
[124] Bower A F, Guduru P R, Sethuraman V A. A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithi um-ion half-cell[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4):804-828.
[125] Cui Z, Gao F, Qu J. A finite deformation stress-dependent chemical po tential and its applications to lithium ion batteries[J]. Journal of the Me chanics and Physics of Solids, 2012, 60(7):1280-1295.
[126] Gao Y F, Zhou M. Strong stress-enhanced diffusion in amorphous lithi um alloy nanowire electrodes[J]. Journal of Applied Physics, 2011, 109(1):014310.
[127] Haftbaradaran H, Song J, Curtin W A, et al. Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration[J]. Journal of Power Sources, 2011, 196(1):361-370.
[128] Ryu I, Choi J W, Cui Y, et al. Size-dependent fracture of Si nanowire battery anodes[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(9):1717-1730.
[129] Zhao K J, Pharr M, Vlassak J J, et al. Inelastic hosts as electrodes for high-capacity lithium-ion batteries[J]. Journal of Applied Physics, 2011, 109(1):016110.
[130] Zhao K, Pharr M, Wan Q, et al. Concurrent reaction and plasticity dur ing initial lithiation of crystalline silicon in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(3):A238-A243.
[131] Yang H, Huang S, Huang X, et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires[J]. Nano Letters, 2012, 12(4):1953-1958.
[132] Pharr M, Zhao K, Wang X, et al. Kinetics of initial lithiation of crystal line silicon electrodes of lithium-ion batteries[J]. Nano Letters, 2012, 12(9):5039-5047.
[133] Cui Z, Gao F, Qu J. Interface-reaction controlled diffusion in binary sol ids with applications to lithiation of silicon in lithium-ion batteries[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2):293-310.
[134] Huang S, Fan F, Li J, et al. Stress generation during lithiation of highcapacity electrode particles in lithium ion batteries[J]. Acta Materialia, 2013, 61(12):4354-4364.
[135] Yang H, Fan F, Liang W, et al. A chemo-mechanical model of lithia tion in silicon[J]. Journal of the Mechanics and Physics of Solids, 2014, 70(1):349-361.
[136] Ryu I, Lee S W, Gao H, et al. Microscopic model for fracture of crystal line Si nanopillars during lithiation[J]. Journal of Power Sources, 2014, 255(6):274-282.
[137] Yang H, Liang W, Guo X, et al. Strong kinetics-stress coupling in lithi ation of Si and Ge anodes[J]. Extreme Mechanics Letters, 2015, 30(1):1-6.
[138] Xu R, Zhao K. Mechanical interactions regulated kinetics and morphol ogy of composite electrodes in Li-ion batteries[J/OL]. Extreme Mechan ics Letters, 2015.[2016-08-23]. http://dx.doi.org/10.1016/j.eml. 2015.10.004.
[139] Chen L Q. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32(1):113-140.
[140] Chen L, Fan F, Hong L, et al. A phase-field model coupled with large elasto-plastic deformation:Application to lithiated silicon electrodes[J]. Journal of the Electrochemical Society, 2014, 161(11):F3164-F3172.
[141] Klinsmann M, Rosato D, Kamlah M, et al. Modeling crack growth dur ing Li extraction in storage particles using a fracture phase field ap proach[J]. Journal of the Electrochemical Society, 2016, 163(2):A102-A118.
[142] Zuo P, Zhao Y P. A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2015, 17(1):287-297.
[143] Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5):309-314.
[144] Xiao Q, Gu M, Yang H, et al. Inward lithium-ion breathing of hierarchi cally porous silicon anodes[J]. Nature Communications, 2015(6):8844.
[145] Yi R, Dai F, Gordin M L, et al. Micro-sized Si-C composite with inter connected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries[J]. Advanced Energy Ma terials, 2013, 3(3):295-300.
[146] Sun Y, Sills R B, Hu X, et al. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices[J]. Nano Let ters, 2015, 15(6):3899-3906.
[147] Liu N, Wu H, McDowell M T, et al. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321.
[148] Li Y, Yan K, Lee H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1(2):15029.
[149] Kim S, Choi S J, Zhao K, et al. Electrochemically driven mechanical en ergy harvesting[J]. Nature Communications, 2016(7):10146.
[150] Manthiram A, Chung S H, Zu C. Lithium-sulfur batteries:Progress and prospects[J]. Advanced Materials, 2015, 27(12):1980-2006.
[151] Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8):947-958.
文章导航

/