专题论文

牺牲局部、成就整体的细胞自噬——2016年度诺贝尔生理学或医学奖成果简介

  • 杨娇 ,
  • 胡荣贵
展开
  • 中国科学院上海生物化学与细胞生物学研究所, 中国科学院分子细胞科学卓越研究中心, 上海 200031
杨娇,博士研究生,研究方向为蛋白质降解调控,电子信箱:yangjiao@sibcb.ac.cn

收稿日期: 2016-10-23

  修回日期: 2016-11-14

  网络出版日期: 2017-02-07

Mechanism of autophagy: Commentary on the 2016 Nobel Prize in Physiology or Medicine

  • YANG Jiao ,
  • HU Ronggui
Expand
  • Shanghai Institute of Biochemistry and Cell Biology;Center for Excellence in Molecular and Cell Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Received date: 2016-10-23

  Revised date: 2016-11-14

  Online published: 2017-02-07

摘要

自噬是一种细胞自身成分降解并回收利用的基本过程。日本科学家Yoshinori Ohsumi(大隅良典)因阐明细胞自噬的分子机制和生理功能而获得2016年度诺贝尔生理学或医学奖。这项工作不但为理解机体适应饥饿、感染免疫应答等诸多生化过程打开了一扇窗,也为治疗自噬相关疾病及开发针对自噬的潜在药物靶标奠定了基础。本文解读细胞自噬分子机制的科学背景及内涵,综述自噬相关研究的进展,并探讨其对人类健康的重大意义。

本文引用格式

杨娇 , 胡荣贵 . 牺牲局部、成就整体的细胞自噬——2016年度诺贝尔生理学或医学奖成果简介[J]. 科技导报, 2016 , 34(24) : 39 -43 . DOI: 10.3981/j.issn.1000-7857.2016.24.005

Abstract

The 2016 Nobel Prize in Physiology or Medicine honors Japanese scientist, Yoshinori Ohsumi, whose original work has elucidated the mechanism and physiological function of autophagy. His work helped us understand many physiological processes, for example adaptation to starvation and immune response to infection, and opened a new avenue for the development of therapeutic strategies against autophagy-related maladies. Here we briefly introduce his work about autophagy, the significance of his findings to human health, and related research progress at home and abroad.

参考文献

[1] Baba M, Osumi M, Scott S V, et al. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome[J]. The Journal of Cell Biology, 1997, 139(7):1687-1695.
[2] Baba M, Takeshige K, Baba N, et al. Ultrastructural analysis of the au-tophagic process in yeast:detection of autophagosomes and their charac-terization[J]. The Journal of Cell Biology, 1994, 124(6):903-913.
[3] Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-de-fective mutants of Saccharomyces cerevisiae[J]. FEBS Letters, 1993(1/2), 333:169-174.
[4] Matsuura A, Tsukada M, Wada Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae[J]. Gene, 1997, 192(2):245-250.
[5] Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J]. The Journal of Cell Biology, 1992, 119(2):301-311.
[6] Mizushima N, Sugita H, Yoshimori T, et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation sys-tem essential for autophagy[J]. The Journal of Biological Chemistry, 1998, 273(51):33889-33892.
[7] Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after process-ing[J]. The EMBO Journal, 2000, 19(21):5720-5728.
[8] Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system medi-ates protein lipidation[J]. Nature, 2000, 408(6811):488-492.
[9] Mizushima N, Noda T, Yoshimori T, et al. A protein conjugation system essential for autophagy[J]. Nature, 1998, 395(6700):395-398.
[10] Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, con-trols autophagy in yeast[J]. The Journal of Biological Chemistry, 1998, 273(7):3963-3966.
[11] Nakatogawa H, Ishii J, Asai E, et al. Atg4 recycles inappropriately lip-idated Atg8 to promote autophagosome biogenesis[J]. Autophagy, 2012, 8(2):177-186.
[12] Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus[J]. Science, 2004, 306(5698):1037-1040.
[13] Isaka Y, Takabatake Y, Takahashi A, et al. Hyperuricemia-induced inflammasome and kidney diseases. Nephrology, dialysis, transplanta-tion:Official publication of the European Dialysis and Transplant As-sociation-European Renal Association, 2016, 31(6):890-896.
[14] Mao K, Wang K, Zhao M, et al. Two MAPK-signaling pathways are re-quired for mitophagy in Saccharomyces cerevisiae[J]. The Journal of Cell Biology, 2011, 193(4):755-767.
[15] Mao K, Wang K, Liu X, et al. The scaffold protein Atg11 recruits fis-sion machinery to drive selective mitochondria degradation by autopha-gy[J]. Developmental Cell, 2013, 26(1):9-18.
[16] Nair U, Jotwani A, Geng J, et al. SNARE proteins are required for macroautophagy[J]. Cell, 2011, 146(2):290-302.
[17] Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402:672-676.
[18] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
[19] Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J]. Nature, 2006, 441(7095):885-889.
[20] Wild P, Farhan H, McEwan D G, et al. Phosphorylation of the autoph-agy receptor optineurin restricts Salmonella growth[J]. Science, 2011, 333(6039):228-233.
[21] Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 con-trol cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell, 2007, 131(6):1149-1163.
[22] Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1[J]. Nature Cell Biology, 2010, 12(3):213-223.
[23] Ichimura Y, Waguri S, Sou Y S, et al. Phosphorylation of p62 acti-vates the Keap1-Nrf2 pathway during selective autophagy[J]. Molecu-lar Cell, 2013, 51(5):618-631.
[24] Zhang Y, Yan L, Zhou Z, et al. SEPA-1 mediates the specific recogni-tion and degradation of P granule components by autophagy in C. ele-gans[J]. Cell, 2009, 136(2):308-321.
[25] Tian Y, Li Z, Hu W, et al. C. elegans screen identifies autophagy genes specific to multicellular organisms[J]. Cell, 2010, 141(6):1042-1055.
[26] Cullup T, Kho A L, Dionisi-Vici C, et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective au-tophagy[J]. Nature Genetics, 2013, 45(1):83-87.
[27] Saitsu H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood[J]. Nature Genetics, 2013, 45(4):445-449.
[28] Yu L, McPhee C K, Zheng L, et al. Termination of autophagy and ref-ormation of lysosomes regulated by mTOR[J]. Nature, 2010, 465(7300):942-946.
[29] Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitoph-agy[J]. Molecular Cell, 2014, 54(3):362-377.
[30] Wang Y, Zhang N, Zhang L, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62[J]. Molecular Cell, 2016, 63(1):34-48.
[31] Gao C, Cao W, Bao L, et al. Autophagy negatively regulates Wnt sig-nalling by promoting dishevelled degradation[J]. Nature Cell Biology, 2010, 12(8):781-790.
[32] Wang Y, Yu B, Zhao J, et al. Autophagy contributes to leaf starch deg-radation[J]. Plant Cell, 2013, 25(4):1383-1399.
[33] Zhang C S, Lin S C. AMPK promotes autophagy by facilitating mito-chondrial fission[J]. Cell Metabolism, 2016, 23(3):399-401.
[34] Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation[J]. Molecular Cell, 2015, 57(7):456-466.
[35] Zhao Y G, Zhang H. The Nobel Prize:an appetizer before the feast[J]. Science Bulletin, 2016, 61(22):1711-1714.
[36] Liu Z, Chen P, Gao H, et al. Ubiquitylation of autophagy receptor Op-tineurin by HACE1 activates selective autophagy for tumor suppression[J]. Cancer Cell, 2014, 26(1):106-120.
文章导航

/