综述文章

基于材料基因组计划的计算和数据方法

  • 杨小渝 ,
  • 任杰 ,
  • 王娟 ,
  • 赵旭山 ,
  • 王宗国 ,
  • 宋健龙
展开
  • 1. 中国科学院计算机网络信息中心, 北京 100190;
    2. 中国科学院大学, 北京 100049
杨小渝,研究员,研究方向为材料信息学,高通量材料集成计算,电子信箱:kxy@cnic.cn

收稿日期: 2015-10-22

  修回日期: 2016-11-28

  网络出版日期: 2017-02-07

基金资助

国家自然科学基金面上项目(61472394);国家发改委高技术服务业研发与产业化专项(科发计函字[2013]8号)

Computational and data management based on Material Genome Initiative

  • YANG Xiaoyu ,
  • REN Jie ,
  • WANG Juan ,
  • Zhao Xushan ,
  • WANG Zongguo ,
  • SONG Jianlong
Expand
  • 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-10-22

  Revised date: 2016-11-28

  Online published: 2017-02-07

摘要

材料基因组计划的核心理念,是通过计算、数据和实验“三位一体”的方式,变革传统的主要基于经验和实验的“试错法”材料研发模式,把发现、开发、生产和应用新材料的速度提高到目前的两倍。它旨在建立一个新的以计算模拟和理论预测优先、实验验证在后的新材料研发文化,从而取代现有的以经验和实验为主的材料研发的模式。本文论述如何通过计算和数据的方法加快新材料研发,介绍帮助加快新材料发现的高通量集成计算基础平台和软件框架MatCloud。

本文引用格式

杨小渝 , 任杰 , 王娟 , 赵旭山 , 王宗国 , 宋健龙 . 基于材料基因组计划的计算和数据方法[J]. 科技导报, 2016 , 34(24) : 62 -67 . DOI: 10.3981/j.issn.1000-7857.2016.24.008

Abstract

The core philosophy of Material Genome Initiative is the transition of the way of new material design from traditional"try-anderror"approach to the in-silico material design approach which employs intensive computing and material informatics. It aims to speed up discovery, development, production and deployment of new material two times faster than it is now. It means a culture shift of the material discovery, development and deployment:simulation and prediction first, followed by the experiment. This paper depicts how computational approach and informatics can discover new materials. A high throughput computational material platform and software framework, namely, MatCloud, is discussed.

参考文献

[1] 田恬. 材料基因组工程——推动材料创新的引擎[J]. 科技导报, 2015, 33(10):3. Tian Tian. Material Genome Engineering-An engine to accelerate new material innovation[J]. Science & Technol——材料研发新模式[J]. 科技导报, 2015, 33(10):13-19. Wang Hong, Xiang Yong, Xiagn Xiaodong, et al. Materials genome en-ables research and development revolution[J]. Science & Technology Review, 2015, 33(10):13-19.
[3] Yang X, Wallom D, Waddington S, et al. Cloud computing in e-Sci-ence:Research challenges and opportunities[J]. The Journal of Super-computing, 2014, 70(1):408-464.
[4] 杨小渝. 加快材料基因组工程信息化基础设施的建设[J]. 科技导报, 2016, 34(8):13-14. Yang Xiaoyu. Accelerating the development of material genome initia-tive cyberinfrastructure[J]. Science & Technology Review 2016, 34(8):13-14.
[5] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Re-view, 1964, 136(3B):B864.
[6] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4):1133-1138.
[7] Pople J A. Nobel lecture:Quantum chemical models[J]. Reviews of Mod-ern Physics, 1999, 71(5):1267.
[8] Allen M P. Introduction to molecular dynamics simulation[J]. Computa-tional soft matter:from synthetic polymers to proteins, 2004, 23:1-28.
[9] Warshel A, Levitt M. Theoretical studies of enzymic reactions:Dielec-tric, electrostatic and steric stabilization of the carbonium ion in the re-action of lysozyme[J]. Journal of Molecular Biology, 1976, 103(2):227-249.
[10] Kaufman L, Bernstein H. Computer calculation of phase diagrams[M]. New York:Academic Press, 1970.
[11] Kang B, Ceder G. Battery materials for ultrafast charging and discharg-ing[J]. Nature, 2009, 458(7235):190-193.
[12] Hautier G, Jain A, Ong S P, et al. Phosphates as lithium-ion battery cathodes:An evaluation based on high-throughput ab initio calculation[J]. Chemistry of Materials. 2011, 23(15):3495-3508.
[13] Kang K, Meng Y S, Bréger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763):977-980.
[14] Curtarolo S, Morgan D, Ceder G. Accuracy of ab initio methods in pre-dicting the crystal structures of metals:A review of 80 binary alloys[J]. Calphad, 2005, 29(3):163-211.
[15] Raccuglia C, Elbert K, Adler P, et al. Machine-learning-assisted ma-terials discovery using failed experiments[J]. Nature, 2016, 533:73-76.
[16] Kristian S, Karsten W. Making the most of materials computations[J]. Science, 2016, 354(6309):180-181.
[17] Makishima A, Uo M, Inoue H. Improved expert system for materials design of glasses[C]//Proceedings of the Second International Confer-ence and Exhibition on Computer Applications to Materials and Molec-ular Science and Engineering, Yokohama, Japan:Computer Aided In-novation of New Materials II, 1992:22-25.
[18] Yasui I, Utsuno F. Material design of glasses based on database-IN-TERGLAD[C]//Proceedings of the Second International Conference and Exhibition on Computer Applications to Materials and Molecular Science and Engineering, Yokohama, Japan:Computer Aided Innova-tion of New Materials, 1993:1539-1544.
[19] Futagami T, Makishima A, Yasui I, et al. Expert system for materials Design of PTC Thermistors[C]//Proceedings of the Second Internation-al Conference and Exhibition on Computer Applications to Materials and Molecular Science and Engineering, Yokohama, Japan:Computer Aided Innovation of New Materials II, 1993:1565-1568.
[20] Ashby M F. Materials selection in mechanical design[M]. 2nd, Oxford:Butterworth-Heinemann, 1999.
[21] Balachandran P V, Broderick S R, Rajan K. Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning[J]. Proceedings of Royal Society A:Mathematical, Physics, and Engineering Science, 2011, 467(2132):2271-2290.
[22] Fischer C C, Tibbetts K J, Morgan D, et al. Predicting crystal struc-ture by merging data mining with quantum mechanics[J]. Nature Mate-rials, 2006, 5(8):641-646.
[23] Saad Y, Gao D, Ngo T, et al. Data mining for materials:Computational experiments with AB compounds[J]. Physical Review B, 2012, 85(10):104104.
[24] Saal J E, Kirklin S, Aykol M, et al. Materials design and discovery with high-throughput density functional theory:The open quantum ma-terials database (OQMD)[J]. Journal of the Minerals, Metals & Materi-als Society, 2013, 65(11):1501-1509.
[25] Kirklin S, Meredig B, Wolverton C. High-throughput computational screening of new Li-Ion battery anode materials[J]. Advanced Energy Materials, 2013, 3(2):252-262.
[26] Saal J E, Wolverton C. Thermodynamic stability of Mg-based ternary long-period stacking ordered structures[J]. Acta Materialia, 2014, 68:325-338.
[27] Hu L H, Wang X J, Wong L H, et al. Combined first-principles calcu-lation and neural-network correction approach for heat of formation[J]. Journal of Chemical Physics, 2003, 119(22):11501-11507.
[28] Bligaard T, Johannesson G H, Ruban A V, et al. Pareto-optimal alloys[J]. Applied Physics Letters, 2003, 83(22):4527-4529.
[29] 王卓, 杨小渝, 郑宇飞, 等. 材料基因组框架下的材料集成设计及信息平台初探[J]. 科学通报, 2013, 58(35):3733-3742. Wang Zhuo, Yang Xiaoyu, Zheng Yufei, et al. Integrated materials de-sign and informatics platform within the materials genome framework[J]. Chinese Science Bulletin, 2013, 58(35):3733-3742.
文章导航

/