两性霉素B是多烯类广谱抗真菌抗生素,已广泛应用于深部真菌感染。以结节链霉菌Streptomyces nodosus ZJB15076为出发菌种,对其发酵生产两性霉素B的培养基成分进行了优化,确定了较优的碳源和氮源及最适浓度:质量分数为葡萄糖4.5%、牛肉膏4%;在此基础上继续进行发酵条件的研究,确定了较优的发酵条件:发酵初始pH值为7.0,培养温度为28℃,装液量为40 mL/250 mL,接种量(体积分数)为2%。分析了在摇瓶内添加玻璃珠对两性霉素B产量的影响,研究结果表明,添加玻璃珠后能显著改善菌丝聚集情况并显著提高两性霉素B的产量,产量与对照组相比提高了341.1%,达到4563.2 mg/L。
Amphotericin B(AmB) is one of the most efficient antimycotic agents, thus widely used in clinical practice. In this study, Streptomyces nodosus ZJB15076 is used for AmB fermentation. The optimal carbon source, nitrogen source and fermentation conditions for the production of AmB are tested. The results show that glucose and nitrogen beef extraction is best for the fermentation of AmB. And the optimized fermenting conditions through single factor test are summed up as follows:culture temperature 28℃, initial pH value 7.0, inoculation 2% and liquid volume 40 mL/250 mL. The influence of adding glass bead is significant. After adding glass bead, the production of AmB is increased by 341.1% and reaches 4563.2 mg/L.
[1] Torrado J J, Espada R, Ballesteros M P, et al. Amphotericin B formula-tions and drug targeting[J]. Journal of Pharmaceutical Sciences, 2008, 97(7):2405-2425.
[2] Caffrey P, Lynch S, Flood E, et al. Amphotericin biosynthesis in Strepto-myces nodosus:Deductions from analysis of polyketide synthase and late genes[J]. Chemistry & Biology, 2001, 8(7):713-723.
[3] Chen S, Huang X, Zhou X, et al. Organizational and mutational analy-sis of a complete FR-008/candicidin gene cluster encoding a structural-ly related polyene complex[J]. Chemistry & Biology, 2003, 10(11):1065-1076.
[4] Leadlay P F, Staunton J, Oliynyk M, et al. Engineering of complex polyketide biosynthesis-insights from sequencing of the monensin bio-synthetic gene cluster[J]. Journal of Industrial Microbiology & Biotech-nology, 2001, 27(6):360-367.
[5] Nikodinovic J, Barrow K D, Chuck J A. High frequency transformation of the amphotericin-producing bacterium Streptomyces nodosus[J]. Jour-nal of Microbiological Methods, 2003, 55(1):273-277.
[6] Lemke A, Kiderlen A F, Kayser O. Amphotericin B[J]. Applied Microbi-ology & Biotechnology, 2005, 68(2):151-162.
[7] Brajtburg J, Powderly W G, Kobayashi G S, et al. Amphotericin B:De-livery systems[J]. Antimicrobial Agents & Chemotherapy, 1990, 34(3):381-384.
[8] 黄振, 陈小龙. 抗真菌剂两性霉素B的结构修饰[J]. 中国抗生素杂志, 2010, 35(8):571-575. Huang Zhen, Chen Xiaolong. Structural modifications of an antifungal agent:Amphotericin B[J]. Chinese Journal of Antibiotics, 2010, 35(8):571-575.
[9] Volmer A A, Szpilman A M, Carreira E M. ChemInform abstract:Syn-thesis and biological evaluation of Amphotericin B derivatives[J]. Natu-ral Product Reports, 2010, 27(9):1329-1349.
[10] Taylor A W, Costello B J, Hunter P A, et al. Synthesis and antifungal selectivity of new derivatives of Amphotericin B modified at the C-13 position[J]. Journal of Antibiotics, 1993, 46(3):486-493.
[11] Ibragimova V, Alieva I, Kasumov K, et al. Transient permeability in-duced by alkyl derivatives of amphotericin B in lipid membranes[J]. Biochimica Et Biophysica Acta, 2006, 1758(1):29-37.
[12] Kaup B A, Ehrich K, Pescheck M, et al. Microparticle-enhanced culti-vation of filamentous microorganisms:Increased chloroperoxidase for-mation by Caldariomyces fumago as an example[J]. Biotechnology & Bioengineering, 2008, 99(3):491-498.
[13] Walisko R, Krull R, Schrader J, et al. Microparticle based morphology engineering of filamentous microorganisms for industrial bio-produc-tion[J]. Biotechnology Letters, 2012, 34(11):1975-1982.
[14] 牛坤, 胡逸博, 毛健, 等. 微粒添加对棘白菌素B发酵过程的影响[J]. 生物工程学报, 2015, 31(7):1082-1088. Niu Kun, Hu Yibo, Mao Jian, et al. Effect of microparticles on Echino-candin B production by Aspergillus nidulans[J]. Chinese Journal of Bio-technology, 2015, 31(7):1082-1088.
[15] Driouch H, Roth A, Dersch P, et al. Filamentous fungi in good shape:Microparticles for tailor-made fungal morphology and enhanced en-zyme production[J]. Bioengineered Bugs, 2011, 2(2):100-104.
[16] Habib D, Becky S, Christoph W. Morphology engineering of Aspergil-lus niger for improved enzyme production[J]. Biotechnology & Bioengi-neering, 2010, 105(6):1058-1068.
[17] Linke H A, Mechlinski W, Schaffner C P. Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the am-photericin B-14C-methyl-ester[J]. Journal of Antibiotics, 1974, 27(3):155-160.
[18] Pfeifer C, Fassauer G, Gerecke H, et al. Purity determination of am-photericin B, colistin sulfate and tobramycin sulfate in a hydrophilic suspension by HPLC[J]. Journal of Chromatography B Analytical Tech-nologies in the Biomedical & Life Sciences, 2015, 990:7-14.
[19] 龚劲松, 李恒, 刘恒霞, 等. 碳氮源对枯草芽孢杆菌发酵产β-甘露聚糖酶的影响[J]. 食品与发酵工业, 2015, 41(10):34-39. Gong Jinsong, Li Heng, Liu Hengxia, et al. Effect of carbon and nitro-gen sources on β-mannanase production from Bacillus subtilis[J]. Food and Fermentation Industries Editorial Staff, 2015, 41(10):34-39.
[20] Krull R, Wucherpfennig T, Esfandabadi M E, et al. Characterization and control of fungal morphology for improved production performance in biotechnology[J]. Journal of Biotechnology, 2012, 163(2):112-123.