研究论文

电子尼古丁传送系统安全评价及风险评估

  • 田永峰 ,
  • 杨柳 ,
  • 段沅杏 ,
  • 赵伟 ,
  • 杨继 ,
  • 巩效伟 ,
  • 李寿波 ,
  • 陈永宽
展开
  • 云南中烟工业有限责任公司技术中心, 昆明 650224
田永峰,博士,研究方向为烟草化学、新型烟草制品质量评价,电子信箱:yongfengtian@126.com

收稿日期: 2015-09-06

  修回日期: 2016-05-13

  网络出版日期: 2017-02-07

基金资助

中国烟草总公司科技重大专项(110201401017)

Safety assessment methods and risk evaluation for electronic nicotine delivery system

  • TIAN Yongfeng ,
  • YANG Liu ,
  • DUAN Yuanxing ,
  • ZHAO Wei ,
  • YANG Ji ,
  • GONG Xiaowei ,
  • LI Shoubo ,
  • CHEN Yongkuan
Expand
  • Technology Center of China Tobacco Yunnan Industry Co., Ltd., Kunming 650224, China

Received date: 2015-09-06

  Revised date: 2016-05-13

  Online published: 2017-02-07

摘要

电子尼古丁传送系统(ENDS)具有成分简单、烟碱含量可控等优点,被认为是一种理想的卷烟有效替代品。由于电子尼古丁传送系统在尼古丁释放过程中不发生燃烧,可降低烟雾中的有害成分,被认为可降低对吸烟者造成的危害。为进一步认识ENDS,本文综述了其使用中可能面临的DNA损伤及典型有害成分亚硝胺和苯并[a]芘的致突变性等问题。从化学分析、毒理学、细胞暴露、动物实验和临床研究5个方面讨论了ENDS的风险性,并对ENDS的发展进行了展望。

本文引用格式

田永峰 , 杨柳 , 段沅杏 , 赵伟 , 杨继 , 巩效伟 , 李寿波 , 陈永宽 . 电子尼古丁传送系统安全评价及风险评估[J]. 科技导报, 2016 , 34(24) : 131 -136 . DOI: 10.3981/j.issn.1000-7857.2016.24.020

Abstract

Electronic nicotine delivery system (ENDS) has the advantage of chemically simple and nicotine contents controllable, and is considered to be the ideal substitute for cigarette. Meanwhile, ENDS is marketed as less harmful alternatives to cigarette because of not burning in the nicotine delivery process and less harmful chemical components in vapor. To deeply study ENDS, DNA damage and mutation caused by tobacco specific nitrosamines (TSNAs) and benzo(a)pyrene in ENDS vapor are reviewed in this paper. Risk evaluation of ENDS in chemical analysis, toxicology, cell exposure, animals experiments and clinical research are also discussed. Finally, the future development of ENDS is prospected.

参考文献

[1] 谢建平. 电子烟相关技术与法律监管[C]//中国烟草学会2014年学术年会. 北京, 2014-12-23. Xie Jianping. E-cigarette technology and legal supervision[C]//The Chi-nese Society of Tobacco in 2014 Academic Conference. Beijing, Dec 23, 2014.
[2] 李保江. 全球电子烟市场发展、主要争议及政府管制[J]. 中国烟草学报, 2014, 20(4):101-107. Li Baojiang. Electronic cigarette development, the main issues and gov-ernment regulation in global market[J]. Acta Tabacaria Sinica, 2014, 20(4):101-107.
[3] Henningfield J E, Zaatari G S. Electronic nicotine delivery systems:emerging science foundation for policy[J]. Tobacco Control, 2010, 19(19):89-90.
[4] Dawkins L, Concoran O. Acute electronic cigarette use:nicotine deliv-ery and subjective effects in regular users[J]. Psychopharmacology, 2014, 231(2):401-407.
[5] Jasinska A J, Zorick T, Brody A L, et al. Dual role of nicotine in addic-tion and cognition:A review of neuroimaging studies in humans[J]. Neu-ropharmacology, 2014, 84(1):111-122.
[6] Goniewicz M L, Kuma T, Gawron M, et al. Nicotine levels in electronic cigarettes[J]. Nicotine Tobacco Research, 2012, 15(1):158-166.
[7] McAuley T R, Hopke P K, Zhao J, et al. Comparison of the effects of ecigarette vapor and cigarette smoke on indoor air quality Inhalation Toxicology[J]. Inhalation Toxicology, 2012, 24(12):850-857.
[8] Phillips D H. DNA adducts as markers of exposure and risk[J]. Muta-tion Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 577(1/2):284-292.
[9] Hang B, Chenna A, Rao S, et al. 1, N6-ethenoadenine and 3, N4-ethe-nocytosine are excised by separate human DNA glycosylases[J]. Carci-nogenesis, 1996, 17(1):155-157.
[10] Petronzelli F, Riccio A, Markham G D, et al. Biphasic kinetics of the human DNA repair protein MED1(MBD4), a mismatch-specific DNA N-Glycosylase[J]. Journal of Biological Chemistry, 2000, 275(42):32422-32429.
[11] Shen M, Bin P, Li H-B, et al. Increased levels of etheno-DNA ad-ducts and genotoxicity biomarkers of long-term exposure to pure die-sel engine exhaust[J]. Science of the Total Environment, 2016, 543:267-273.
[12] Ghissassi F, Barbin A, Nair J, et al. Formation of 1, N6-ethenoadenine and 3, N4-ethenocytosine by lipid peroxidation products and nucleic acid bases[J]. Chemical Research in Toxicology, 1995, 8(2):278-283.
[13] Wang Y, Millonig G, Nair J, et al. Ethanol-induced cytochrome P4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver dis-ease[J]. Hepatology, 2009, 50(2):453-461.
[14] Seitz H K, Stickel F. Risk factors and mechanisms of hepatocarcino-genesis with special emphasis on alcohol and oxidative stress[J]. Bio-logical Chemistry, 2006, 387(4):349-360.
[15] You S J, Wang J S, Dai X X, et al. Transcriptional inhibition and mu-tagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA[J]. Nucleic Acids Research, 2015, 43(2):1012-1018.
[16] Kim H, Shin H. Determination of tobacco-specific nitrosamines in re-placement liquids of electronic cigarettes by liquid chromatographytandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1291(2):48-55.
[17] Chen H J, Lee C R. Detection and simultaneous quantification of three smoking-related ethylthymidine adducts in human salivary DNA by liquid chromatography tandem mass spectrometry[J]. Toxicology Letters, 2014, 224(1):101-107.
[18] Conney A H, Chang I L, Jerina D M, et al.Studies on the metabo-lism of benzo[a]pyrene and dose-dependent differences in the profile of its ultimate carcinogenic metabolite[J]. Drug Metabolism Reviews, 1994, 26(1/2):125-163.
[19] Shimada T, Gillam E M, Oda Y, et al. Metabolism of Benzo[a]pyrene to trans-7, 8-Dihydroxy-7, 8-dihydrobenzo[a]pyrene by Recombinant Human Cytochrome P4501B1 and Purified Liver Epoxide Hydrolase[J]. Chemical Research Toxicology, 1999, 12(7):623-629.
[20] Nesnow S, Davis C, Nelson G B, et al. Comparison of the genotoxic ac-tivities of the K-region dihydrodiol of benzo[a]pyrene with benzo[a]py-rene in mammalian cells:morphological cell transformation; DNA dam-age; and stable covalent DNA adducts[J]. Mutation Research, 2002, 521(1-2):91-102.
[21] Dipple A. Formation, metabolism, and mechanism of action of polycy-clic aromatic hydrocarbons[J]. Cancer Research, 1983, 43(Suppl 5):2422-2425.
[22] Jeffrey A M, Jennette K W, Blohstein S H, et al. Benzo[a]pyrene-nu-cleic acid derivative found in vivo:structure of a benzo[a]pyrenetetra-hydrodiol epoxide-guanosine adduct[J]. ChemInform, 1976, 98(48):5714-5715.
[23] Denissenko M F, Pan A, Tang M, et al. Preferential formation of benzo[a]pyrene Adducts at lung cancer mutational hotspots in P53[J]. Science, 1996, 274(5286):430-432.
[24] Rugged B, Dirado M, Zhang S Y, et al. Benzo[a]pyrene-induced mu-rine skin tumors exhibit frequent and characteristic G to T mutations in the p53 gene[J]. PNAS, 1993, 90(3):1013-1017.
[25] Hhsgafvel-pttriainen K, Ridanpaa M, Anttila S, et al. p53 and ras gene mutations in lung cancer:implications for smoking and occupa-tional exposures[J]. Journal of Occupational and Environmental Medi-cine, 1995, 37(1):69-76.
[26] Ross J A, Nesnow S. Polycyclic aromatic hydrocarbons between DNA adducts and ras oncogene mutations[J]. Mutation Research, 1999, 424(1/2):155-166.
[27] Marshall C J, Vousden K H, Phillips D H. Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diolepoxide[J]. Nature, 1984, 310(5978):586-589.
[28] Pfeifer G P, Denissenko M F, Olivier M, et al. Tobacco smoke carcino-gens, DNA damage and p53 mutations in smoking-associated cancers[J]. Oncogene, 2002, 21(48):7435-7451.
[29] Hecht S S, Carmella B S, Kotandeniya D, et al. Evaluation of toxicant and carcinogen metabolites in the urine of E-Cigarette users versus cigarette smokers[J]. Nicotine & Tobacco Research, 2015, 17(6):704-709.
[30] Ambrose J Z, Barua R S. The pathophysiology of cigarette smoking and cardiovascular disease:An update[J]. Journal of the American Col-lege of Cardiology, 2004, 43(10):1731-1737.
[31] Dawkins L, Turnern J, Roberys A, et al.‘Vaporing’ profiles and pref-erences:an online survey of electronic cigarette users[J]. Addiction, 2013, 108(6):1115-1125.
[32] Dawkins L, Concoran O. Acute electronic cigarette use:nicotine deliv-ery and subjective effects in regular users[J]. Psychopharmacology, 2014, 231(2):401-407.
[33] Vansickel A R, Eissenberg T. Electronic cigarettes:Effective nicotine delivery after acute administration[J]. Nicotine Tobacco Research, 2013, 15(1):267-270.
[34] Hukkanen J, Jacob P, Benowitz N L. metabolism and disposition kinet-ics of nicotine[J]. Pharmacological Reviews, 2005, 57(1):79-115.
[35] Etter J F, Bullen C. Salvia cotinine levels in users of electronic ciga-rettes[J]. European Respiratory Journal, 2011, 38(5):1219-1220.
[36] Etter J, Bullen C. Electronic cigarette:users profile, utilization, satis-faction and perceived efficacy[J]. Addiction, 2011, 106(11):2017-2028.
[37] Flouris A D, Chorti M S, Poulianiti K P, et al. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function[J]. Inhalation Toxicology, 2013, 25(2):91-101.
[38] Laugesen M. Safety report on the Ruyan® e-cigarette cartridge and inhaled Aerosol[R]. 2015-09-06. http://www.healthnz.co.nz/RuyanCar-tridgeReport30-Oct-08.pdf. 2008.
[39] Westenberer B. Evaluation of e-Cigarettes. St. Louis, MO:Department of health and human services, food and drug administration, center for drug evaluation and research[R]. Division of Pharmaceutical Analysis. 2015-09-06. http://www.fda.gov/downloads/drugs/Scienceresearch/UCM173250.pdf.2013.
[40] Kim H, Shin H. Determination of tobacco-specific nitrosamines in re-placement liquids of electronic cigarettes by liquid chromatographytandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1291(2):48-55.
[41] Bahl V, Lin S, Xu N, et al. Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models[J]. Reproductive Toxicology, 2012, 34(4):529-537.
[42] Hecht S S, Carmella B S, Kotandeniya D, et al. Evaluation of toxicant and carcinogen metabolites in the urine of E-Cigarette users versus cigarette smokers[J]. Nicotine & Tobacco Research, 2015, 17(6):704-709.
[43] Toyokuni S. Iron and carcinogenesis:from Fenton reaction to target genes[J]. Redox Report, 2002, 7(4):189-196.
[44] Romagna G, Allifranchini E, Bocchietto E, et al. Cytotoxicity evalua-tion of electronic cigarette vapor extract on cultured mammalian fibro-blasts (ClearStream-LIFE):Comparison with tobacco cigarette smoke extract[J]. Inhalation Toxicology, 2013, 25(6):354-361.
[45] Behar R, Davis B, Wang Y, et al. Identification of toxicants in cinna-mon-flavored electronic cigarette refill fluids[J]. Toxicology In Vitro, 2014, 28:198-208.
[46] Robertson O, Loosli C, Puck T, et al. Tests for the chronic toxicity of propylene glycol and triethylene glycol on monkeys and rats by vapor inhalation and oral administration[J]. Journal of Pharmacology and Ex-perimental Therapeutics, 1947, 131(91):52-76.
[47] Werley M, McDonald P, Lilly P, et al. Non-clinical safety and pharma-cokinetic evaluations of propylene glycol aerosol in Sprague-Dawley rats and Beagle dogs[J]. Toxicology, 2011, 287(1-3):76-90.
[48] Wieslander G, Norback D, Lindgren T. Experimental exposure to pro-pylene glycol mist in aviation emergency training:Acute ocular and re-spiratory effects[J]. Occupational and Environmental Medicine, 2001, 58(10):649-655.
[49] Czekaj P, Palasz A, Lebda-wyborny T, et al. Morphological changes in lungs, placenta, liver and kidneys of pregnant rats exposed to ciga-rette smoke[J]. International Archives of Occupational and Environ-mental Health, 2002, 75(1):S27-S35.
[50] Polosa R, Morjaria J, Caponnetto P, et al. Effectiveness and tolerabili-ty of electronic cigarette in real-life:A 24-month prospective observa-tional study[J]. Internal and Emergency Medicine, 2014, 9(5):537-546.
[51] Farsalinos K, Romagna G, Tsiapras D, et al. Evaluating nicotine levels selection and patterns of electronic cigarette use in a group of "vapers"who had achieved complete substitution of smoking[J]. Subst Abuse, 2013, 7(7):139-146.
[52] Dawkins L. Electronic cigarettes:what are they and are they effective? E-Cigarette Summit, London, UK[R].[2015-09-01]. http://e-ciga-rette-summit.com/wp-content/uploads/2013/12/Summit-Presentations. pdf.2013.
[53] Etter J, Bullen C. Electronic cigarette:Users profile, utilization, satis-faction and perceived efficacy[J]. Addiction, 2011, 106(11):2017-2028.
[54] Vardavas C, Anagnostopoulos N, Kougias M, et al. Short-term pulmo-nary effects of using an electronic cigarette:Impact on respiratory flow resistance, impedance, and exhaled nitric oxide[J]. Chest, 2012, 141(6):1400-1406.
[55] Farsalinos K, Tsiapras D, Kyrzopouios S, et al. Acute effects of using an electronic nicotine-delivery device (e-cigarette) on myocardial function:comparison with the effects of regular cigarettes[J]. BMC Car-diovascular Disorders, 2014, 14(1):1-10.
文章导航

/