专题论文

2016年凝聚态物理学热点回眸

  • 谷林 ,
  • 刘效治 ,
  • 张庆华
展开
  • 1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049
谷林,研究员,研究方向为原位电镜原子尺度表征,电子信箱:l.gu@aphy.iphy.ac.cn;刘效治(共同第一作者),博士研究生,研究方向为透射电镜显微学,电子信箱:liuxz@iphy.ac.cn

收稿日期: 2016-12-25

  修回日期: 2017-01-03

  网络出版日期: 2017-02-16

基金资助

国家自然科学基金优秀青年科学基金项目(51522212);中央组织部“青年拔尖人才支持计划”

Breakthroughs of condensed matter physics in 2016

  • GU Lin ,
  • LIU Xiaozhi ,
  • ZHANG Qinghua
Expand
  • 1. Institute of Physics, Chinese Academy of Sciences;Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-12-25

  Revised date: 2017-01-03

  Online published: 2017-02-16

摘要

为盘点2016年凝聚态物理学领域的进展,以电子负折射现象的发现、氦III的新相中观察到半量子涡旋、实现功能氧化物界面处的自旋电荷转化、发现马约拉纳费米子存在的关键证据、在声学拓扑绝缘体实现声子的量子自旋霍尔效应等成果比例,简述了低维量子体系、关联体系、拓扑体系、带隙调控及量子计算等方向的进展。

本文引用格式

谷林 , 刘效治 , 张庆华 . 2016年凝聚态物理学热点回眸[J]. 科技导报, 2017 , 35(1) : 10 -15 . DOI: 10.3981/j.issn.1000-7857.2017.01.001

Abstract

This article reviewed some important discoveries and achievements in the field of condensed matter physics in 2016. Some examples, such as electron negative refraction, half-quantum vortices and Majorana Fermion, are given to represent low-dimensional quantum systems, correlated systems, topological systems, bandgap regulation, and quantum information.

参考文献

[1] Veselago V G. Electrodynamics of substances with simultaneously negative values of sigma and mu[J]. Soviet Physics Uspekhi-Ussr, 1968, 10(4):509-514.
[2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(292):77-79.
[3] Cubukcu E, Aydin K, Ozbay E, et al. Negative refraction by photonic crystals[J]. Nature, 2003, 423(6940):604-605.
[4] Luo C, Johnson S G, Joannopoulos J D. All-angle negative refraction in a three-dimensionally periodic photonic crystal[J]. Applied Physics Letters, 2002, 81(13):2352-2354.
[5] Lezec H J, Dionne J A, Atwater H A. Negative refraction at visible frequencies[J]. Science, 2007, 316(5823):430-432.
[6] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.
[7] Grbic A, Eleftheriades G V. Overcoming the diffraction limit with a planar left-handed transmission-line lens[J]. Physical review letters, 2004, 92(11):117403.
[8] Cheianov V V, Fal'ko V, Altshuler B L. The focusing of electron flow and a Veselago lens in graphene p-n junctions[J]. Science, 2007, 315(5816):1252-1255.
[9] Wogan T. Negative refraction of electrons spotted in graphene[EB/OL]. (2016-10-03)[2016-12-22]. http://physicsworld.com/cws/article/news/2016/oct/03/negative-refraction-of-electrons-spotted-in-graphene.
[10] Chen S, Han Z, Elahi M M, et al. Electron optics with p-n junctions in ballistic graphene[J]. Science, 2016, 353(6307):1522-1525.
[11] James A S. Viewpoint:Half-quantum vortices in superfluid helium[EB/OL]. (2016-12-14)[2016-12-22]. http://physics.aps.org/articles/v9/148.
[12] Salomaa M M, Volovik G E. Half-quantum vortices in superfluid 3He-A[J]. Physical Review Letters, 1985, 55(11):1184-1187.
[13] Sredzińska K, Galicka A, Brzóska M M, et al. Observation of half-quantum vortices in an antiferromagnetic spinor Bose-Einstein condensate[J]. Physical Review Letters, 2015, 115(1):437-442.
[14] Jang J, Ferguson D G, Vakaryuk V, et al. Observation of half-height magnetization steps in Sr2RuO4[J]. Science, 2011, 331(6014):186-188.
[15] Autti S, Dmitriev V V, Mäkinen J T, et al. Observation of half-quantum vortices in topological superfluid 3He[J]. Physical Review Letters, 2016, 117(25):255301.
[16] Wikipedia. Spin Hall effect[EB/OL].[2016-12-22]. https://en.wikipedia.org/wiki/Spin_Hall_effect.
[17] Lesne E, Fu Y, Oyarzun S, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces[J]. Nature Materials, 2016, 15(12):1261-1266.
[18] Mohanta N, Taraphder A. Topological superconductivity and Majorana bound states at the LaAlO3/SrTiO3 interface[J]. Europhysics Letters, 2014, 108(6):60001.
[19] Majorana E. Teoria simmetrica dell'elettrone e del positrone[J]. Il Nuovo Cimento (1924-1942), 1937, 14(4):171-184.
[20] Fu L, Kane C L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator[J]. Physical review letters, 2008, 100(9):096407.
[21] Mourik V, Zuo K, Frolov S M, et al. Signatures of majoranafermions in hybrid superconductor-semiconductor nanowire devices[J]. Science, 2012, 336(6084):1003-1007.
[22] Deng M T, Yu C L, Huang G Y, et al. Observation of majoranafermions in a Nb-InSbnanowire-Nb hybrid quantum device[J/OL].[2016-12-22]. https://arxiv.org/abs/1204.4130.
[23] Leonid P R, Liu X Y, Furdyna J K. Observation of the fractional ac Josephson effect:The signature of Majorana particles[J/OL].[2016-12-22]. https://arxiv.org/abs/1204.4212.
[24] Nadj P S, Drozdov I K, Li J, et al. Observation of majorana fermions in ferromagnetic atomic chains on a superconductor[J]. Science, 2014, 346(6209):602-607.
[25] Banerjee A, Bridges C A, Yan J Q, et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet[J]. Nature materials, 2016, 15(7):733-740.
[26] Nasu J, Knolle J, Kovrizhin D L, et al. Fermionic response from fractionalization in an insulating two-dimensionalmagnet[J]. Nature Physics, 2016, 12(10):912-915.
[27] Joji N, Yukitoshi M. Phantom Majorana particles found in insulating magnets[EB/OL]. (2016-07-06)[2016-12-22]. http://www.u-tokyo.ac.jp/en/utokyoresearch/research-news/phantom-majorana-particles-found-in-insulating-magnets.html.
[28] Sun H H, Zhang K W, Hu L H, et al. Majorana zero mode detected with spin selective andreevreflection in the vortex of a topological superconductor[J]. Physical Review Letters, 2016, 116(25):257003.
[29] He C, Sun X C, Liu X P, et al. Photonic topological insulator with broken time-reversal symmetry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18):4924-4928.
[30] Wang Q, Yang Y, Ni X, et al. Acoustic asymmetric transmission based on time-dependent dynamical scattering[J]. Scientific Reports, 2015(5):10880.
[31] He C, Ni X, Ge H, et al. Acoustic topological insulator and robust one-way sound transport[J]. Nature Physics, 2016(12):1124-1129.
[32] He C, Chen X L, Lu M H, et al. Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal[J]. Applied Physics Letters, 2010, 96(11):111111-111111-3.
文章导航

/