专题论文

有机化学与生命科学的碰撞——2016年生物有机化学热点回眸

  • 郑庆飞 ,
  • 王守锋
展开
  • 1. 中国科学院上海有机化学研究所, 生命有机化学国家重点实验室, 上海 200032;
    2. 济南大学化学化工学院, 山东省氟化学化工材料重点实验室, 济南 250022
郑庆飞,博士研究生,研究方向为合成化学及合成生物学,电子信箱:zhengqf@sioc.ac.cn

收稿日期: 2016-12-25

  修回日期: 2017-01-03

  网络出版日期: 2017-02-16

When organic chemistry meets biological science: Recent advances in bio-organic chemistry in 2016

  • ZHENG Qingfei ,
  • WANG Shoufeng
Expand
  • 1. State Key Laboratory of Bioorganic and Natural Products Chemistry;Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China;
    2. Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials;School of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250022, China

Received date: 2016-12-25

  Revised date: 2017-01-03

  Online published: 2017-02-16

摘要

生物有机化学旨在阐明复杂生命体系中的内在化学机制,以及通过理性的设计和改良来创造能够由于有机合成化学的生物大分子催化剂。本文遴选2016年发表于《Science》《Nature》《PNAS》《Nature Chemistry》等期刊的部分重要研究结果,回顾2016年生物有机化学领域取得的突破性进展。

本文引用格式

郑庆飞 , 王守锋 . 有机化学与生命科学的碰撞——2016年生物有机化学热点回眸[J]. 科技导报, 2017 , 35(1) : 21 -29 . DOI: 10.3981/j.issn.1000-7857.2017.01.003

Abstract

The investigation of bio-organic chemistry focuses on elucidation of the mechanisms involved in complex biological systems, as well as the design and optimization of efficient biomacromolecule-based catalysts for organic synthesis. In this paper, we select several representative papers published on Science, Nature, PNAS, Nature Chemistry, etc. to summarize the most important progress in this research field.

参考文献

[1] Wright T H, Bower B J, Chalker J M, et al. Posttranslational mutagenesis:A chemical strategy for exploring protein side-chain diversity[J]. Science, 2016, 354(6312):597-608.
[2] Adams S R, Mackey M R, Ramachandra R, et al. Multicolor electron microscopy for simultaneous visualization of multiple molecular species[J]. Cell Chemical Biology, 2016, 23(11):1417-1427.
[3] Tan D, Li Q, Zhang M J, et al. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states[J]. eLife, 2016, 5:e12509.
[4] Zheng Q, Wang S, Duan P, et al. An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization[J]. Proceedings of the National Academy of Sciences, 2016, 113(50):14318-14323.
[5] Key H M, Dydio P, Clark D S, et al. Abiological catalysis by artificial haem proteins containing noble metals in place of iron[J]. Nature, 2016, 534(7608):534-537.
[6] Dydio P, Key H M, Nazarenko A, et al. An artificial metalloenzyme with the kinetics of native enzymes[J]. Science, 2016, 354(6308):102-106.
[7] Kan S B J, Lewis R D, Chen K, et al. Directed evolution of cytochrome C for carbon-silicon bond formation:Bringing silicon to life[J]. Science, 2016, 354(6315):1048-1051.
[8] Wang Z, Xu W, Liu L, et al. A synthetic molecular system capable of mirror-image genetic replication and transcription[J]. Nature Chemistry, 2016(8):698-704.
[9] Sakimoto K K, Wong A B, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268):74-77.
[10] Schwander T, von Borzyskowski L S, Burgener S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro[J]. Science, 2016, 354(6314):900-904.
[11] Zheng Q, Guo Y, Yang L, et al. Enzyme-dependent[4+2] cycloaddition depends on lid-like interaction of the N-terminal sequence with the catalytic core in PyrI4[J]. Cell Chemical Biology, 2016, 23(3):352-360.
文章导航

/