[1] Han L J, Zhou W Q, Li W F. Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973-2013[J]. Scientific Reports, 2016, 6:23604.
[2] Liu J, Mauzerall D L, Chen Q, et al. Air pollutant emissions from Chinese households:A major and underappreciated ambient pollution source[J]. Proceedings of the National Academy of Sciences, 2016, 113(28):7756-7761.
[3] Liu H, Fu M L, Jin X X, et al. Health and climate impacts of ocean-going vessels in East Asia[J]. Nature Climate Change, 2016, 6:1037.
[4] Sun Y L, Wang Z F, Wild O, et al. "APEC blue":Secondary aerosol reductions from emission controls in Beijing[J]. Scientific Reports, 2016, 6:20668.
[5] Wang G H, Zhang R Y, Gomez M E, et al. Persistent sulfate formation from London fog to Chinese haze[J]. Proceedings of the National Academy of Sciences, 2016, 113(48):13630-13635.
[6] Li L, Kumar M, Zhu C Q, et al. Near-barrierless ammonium bisulfate formation via a loop-structure promoted proton-transfer mechanism on the surface of water[J]. Journal of the American Chemical Society, 2016, 138(6):1816-1819.
[7] Li B G, Gasser T, Ciais P, et al. The contribution of China's emissions to global climate forcing[J]. Nature, 2016, 531:357-362.
[8] Peng J F, Hu M, Guo S, et al. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments[J]. Proceedings of the National Academy of Sciences, 2016, 113(16):4266-4271.
[9] Lin L, Wang Z L, Xu Y Y, et al. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols[J]. Geophysical Research Letters, 2016, 43:9860-9868.
[10] Lin J T, Tong D, Davis S, et al. Global climate forcing of aerosols embodied in international trade[J]. Nature Geoscience, 2016, 9:790-794.
[11] Cao C, Lee X H, Liu S D, et al. Urban heat islands in China enhanced by haze pollution[J]. Nature Communications, 2016, 7:12509.
[12] Tie X X, Huang R J, Dai W T, et al. Effect of heavy haze and aerosol pollution on rice and wheat productions in China[J]. Scientific Reports, 2016, 6:29612.
[13] Wang J D, Xing J, Mathur R, et al. Historical trends in PM2.5-related premature mortality during 1990-2010 across the Northern hemisphere[J]. Environmental Health Perspectives, 2016, doi:10.1289/EHP298.
[14] Xing J, Wang J D, Mathur R, et al. Unexpected benefits of reducing aerosol cooling effects[J]. Environmental Science & Technology, 2016, 50(14):7527-7534.
[15] Gao S, Lin Y, Jiao X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529:68-71.
[16] 炭基催化剂干法一体化脱除烟气多种污染物技术工业示范取得突破[EB/OL].[2016-07-07]. http://www.sxicc.cas.cn/xwzx/kydt/201604/t20160407_4580113.html.
[17] Huang J, Hu B, Qi K, et al. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation[J]. European Journal of Soil Biology, 2016, 72:35-41.
[18] Chen Q, An X, Li H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016(92-93):1-10.
[19] Xue K, Yuan M, Shi Z, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 2016, 6:595-600.
[20] Zhou J, Deng Y, Shen L, et al. Temperature mediates continental-scale diversity of microbes in forest soils[J]. Nature Communications, 2016, 7:12083.
[21] Hu H, Wang J, Li J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology, 2016, 18(11):3896-3909.
[22] Xiong S, Ye S, Hu X, et al. Electrochemical detection of ultra-trace Cu(II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion[J]. Electrochimica Acta, 2016, 217:24-33.
[23] Wang J, Wu Y, Zhou J, et al. Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development[J]. Biol Fertil Soils, 2016, 52:825-839.
[24] Wei R, Guo Q, Wen H, et al. Fractionation of stable cadmium isotopes in the cadmium tolerant ricinus communis and hyperaccumulator solanum nigrum[J]. Scientific Reports, 2016, 6:24309.
[25] Yang J, Liu Z, Wan X, et al. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant[J]. Ecotoxicology and Environmental Safety, 2016, 128:206-212.
[26] Guo M, Gong Z, Graeme A, et al. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation[J]. Chemosphere, 2016, 144:1513-1520.
[27] Liu S, Lin F, Wu S, et al. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions[J]. Global Change Biology, 2016, doi:10.1111/gcb.13485.
[28] Wang X, Zhang J, Sun W, et al. Anti-algal activity of palladium oxide-modified nitrogen-doped titanium oxide photocatalyst on Anabaena sp. PCC 7120 and its photocatalytic degradation on Microcystin LR under visible light illumination[J]. Chemical Engineering Journal, 2016, 264:437-444.
[29] Yan C, Che F, Zeng L, et al. Spatial and seasonal changes of arsenic species in Lake Taihu in relation to eutrophication[J]. Science of the Total Environment, 2016, (563-564):496-505.
[30] Yan Z, Han W, Penuelas J, et al. Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts[J]. Ecology Letters, 2016, 19:1237-1246.
[31] Yun X, Yang Y, Liu M, et al. Distribution, seasonal Variations, and ecological risk assessment of polycyclic aromatic hydrocarbons in the East Lake, China[J]. Clean-Soil, Air, Water, 2016, 44:506-514.
[32] Yang M, Liu Z, Sun H, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River:Insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73:132-141.
[33] Zhang Y, Liu X, Qin B, et al. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu:Implications for lake ecological restoration[J]. Scientific Reports, 2016, 6:23867.
[34] Shi W, Zhao X, Han Y, et al. Ocean acidification increases cadmium accumulation in marine bivalves:a potential threat to seafood safety[J]. Scientific Reports, 2016, 6:20197.
[35] Pang C, Liu Y, Ying G, et al. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants:Removal efficiency and exposure risk[J]. Water Research, 2016, 106:562-570.
[36] Ouyang Z Y, Zheng H, Xiao Y, et al. Improvements in ecosystem services from investments in natural capital[J]. Science, 2016, 352:1455-1459.
[37] Wang X, Lin C J, Lu Z Y, et al. Enhanced accumulation and storage of mercury on subtropical evergreen forest floor:Implications on mercury budget in global forest ecosystems[J]. Journal of Geophysical Research Biogeosciences, 2016, 121:2096-2109.
[38] Zhao L, Qiu G L, Anderson C W N, et al. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China[J], Environmental Pollution, 2016, 215:1-9.
[39] Zhao L, Anderson C W N, Qiu G L, et al. Mercury methylation in paddy soil:source and distribution of mercury species at a Hg mining area, Guizhou Province, China[J]. Biogeosciences, 2016, 13:2429-2440.
[40] Yuan X Y, Calatayud V, Gao F, et al. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar[J]. Plant, Cell and Environment, 2016, 39:2276-2287.
[41] Zhao S Q, Liu S G, Zhou D C. Prevalent vegetation growth enhancement in urban environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22):6313-6318.
[42] Lai L, Huang X J, Yang H, et al. Carbon emissions from land-use change and management in China between 1990 and 2010[J]. Science Advances, 2016, 2:e1601063.
[43] Liu X, Sheng H, Jiang S, et al. Intensification of phosphorus cycling in China since the 1600s[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113:2609-2614.
[44] Qin S P, Chough T, Luo J F, et al. Perturbation-free measurement of in situ di-nitrogen emissions from denitrification in nitrate-rich aquatic ecosystems[J]. Water Research, 2017, 109:94-101.
[45] 努力留住美丽蓝天——环境保护部副部长潘岳谈新修订的《大气污染防治法》[EB/OL].[2016-12-26]. http://www.mep.gov.cn/gkml/hbb/qt/201509/t20150906_309375.htm.
[46] 中国国民经济和社会发展第十三个五年规划纲要(全文)[EB/OL].[2016-12-26]. http://www.china.com.cn/lianghui/news/2016-03/17/content_38053101.htm.
[47] 国务院关于印发土壤污染防治行动计划的通知[EB/OL].[2016-12-26]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm.
[48] 国务院办公厅印发《湿地保护修复制度方案》[EB/OL].[2016-12-26]. http://www.chinacourt.org/article/detail/2016/12/id/2379048.shtml.
[49] 《"十三五"生态环境保护规划》政策解读[EB/OL].[2016-12-26]. http://www.scio.gov.cn/34473/34515/Document/1520094/1520094.htm.
[50] 环保部发布2016新版《国家危险废物名录》[EB/OL].[2016-12-26]. http://env.people.com.cn/n1/2016/0621/c1010-28466035.html.
[51] Cao J J, Cohen A, Hansen J, et al. China-US cooperation to advance nuclear power[J]. Science, 353(6299), 547-548.
[52] Kelly F J, Zhu T. Transport solutions for cleaner air[J]. Science, 2016, 352(6288):934-936.
[53] 清华大学联合发布中国燃煤和其它主要空气污染造成的疾病负担报告[EB/OL].[2016-12-26]. http://news.tsinghua.edu.cn/publish/thunews/9945/2016/20160822142121288993767/20160822142121288993767.html.
[54] 中央环保督察动真格[EB/OL].[2016-12-26]. http://news.xinhuanet.com/politics/2016-11/16/c_129365305.htm?from=singlemessage&isappinstalled=1.
[55] 10大问题全面了解第二次中央环保督察[EB/OL].[2016-12-26]. http://www.eepn.com.cn/hbzx/1/2884.html.
[56] 环保部发布2016年环境日主题[EB/OL].[2016-12-26]. http://news.163.com/16/0521/03/BNIESHRF00014AED.html.
[57] 绿色金融与环境污染第三方治理成为新热点[EB/OL].[2016-12-26]. http://news.cqnews.net/html/2016-12/13/content_39836975.htm.
[58] 环境保护部通报重污染天气应对情况[EB/OL].[2016-12-26]. http://www.mep.gov.cn/gkml/hbb/qt/201612/t20161222_369409.htm.