研究论文

平流层飞艇机载风速测量方法

  • 张澜川, 孟军辉, 吕明云
展开
  • 北京航空航天大学航空科学与工程学院, 北京 100083
张澜川,硕士研究生,研究方向为测速系统及传感器设计,电子信箱:zlcddv@163.com

收稿日期: 2016-04-11

  修回日期: 2016-12-16

  网络出版日期: 2017-02-16

基金资助

中国博士后科学基金项目(2016M600891)

Stratospheric airship airborne velocity measurement

  • ZHANG Lanchuan, MENG Junhui, LÜ Mingyun
Expand
  • School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

Received date: 2016-04-11

  Revised date: 2016-12-16

  Online published: 2017-02-16

摘要

风场数据是平流层飞艇实现长时驻空和飞行控制的重要参数。针对平流层空气稀薄、传统机载压力式测风速方法测量精度低等问题,提出一种利用激光雷达直接探测技术的平流层飞艇机载风速测量方法。设计了基于直接探测原理的多普勒激光雷达测风速系统,构建了分别以FPI(Fabry-Perot干涉仪)和MZI(Mach-Zehnder干涉仪)为鉴频器的条纹成像技术的风速反演数学模型,并进行了数值仿真分析。结果显示,在355 nm波长出射激光和20 m/s径向风速条件下,FPI-条纹成像技术与MZI-条纹成像技术的径向风速测量误差分别为11.0%和6.5%,测量分辨率分别为1.90 m/s和1.62 m/s,表明该方法能够满足平流层飞艇机载风速测量要求。

本文引用格式

张澜川, 孟军辉, 吕明云 . 平流层飞艇机载风速测量方法[J]. 科技导报, 2017 , 35(2) : 80 -86 . DOI: 10.3981/j.issn.1000-7857.2017.02.011

Abstract

The wind field data are important input parameters for the stratospheric airship in the long-time loiter and the flight control. In view of the thin air in the stratosphere and the low precision of the pitot tube, a direct detection method based on LIDAR is proposed. A Doppler lidar velocity measurement system based on the direct detection principle is designed. The wind velocity inversion mathematical model of the two fringe imaging techniques is built and numerical simulations are carried out. It is shown that the measurement errors of the Fabry-Perot etalon (FPI) and the Mach-Zehnder interferometer (MZI) are 11.0% and 6.5%, respectively, at 355 nm output laser and 20 m/s wind speed. And the velocity resolution of the two methods are 1.9 m/s and 1.6 m/s, respectively. The results indicate that the new method can effectively meet the requirements of the stratospheric airship wind speed measurement.

参考文献

[1] 王依, 姚开明. 民用飞机空速管空速输出特性研究[J]. 科技创新导报, 2013(3):17-18. Wang Yi, Yao Kaiming. Research on civil aircraft pitot tube pitot out-put characteristic[J]. Science and Technology Innovation Herald, 2013(3):17-18.
[2] 曲国福, 刘宏昭. 微型智能低空速传感器的设计[J]. 传感技术学报, 2008(11):2404-2407. Qu Guofu, Liu Hongzhao. The design of a novel micro intelligent low airspeed sensor[J]. Chinese Journal of Sensors and Actuators[J], 2008(11):2404-2407.
[3] 刘佳佳. AlN基MEMS风速风向集成传感器的设计[D]. 哈尔滨:哈尔滨理工大学, 2013. Liu Jiajia. Design of AIN-based MEMS wind speed and direction inte-grated sensor[D]. Harbin:Harbin University of Science and Technology, 2013.
[4] 姚炜. 微风速矢量测量系统[D]. 合肥:合肥工业大学, 2012. Yao Wei. Measurement system of low wind speed and direction[D]. He-fei:Hefei University of Technology, 2012.
[5] 高冬晖. CMOS集成二维风速传感器的研究[D]. 南京:东南大学. 2005. Gao Donghui. Research on CMOS integrated two-dimensional thermal wind sensor[D]. Nanjing:Southeast University, 2005.
[6] 韦青燕, 张天宏. 高超声速热线/热膜风速仪研究综述及分析[J]. 测试技术学报, 2012, 26(2):142. Wei Qingyan, Zhang Tianhong. Review and analysis of hot-wire/film an-emometry for hypersonic airflow measurement[J]. Journal of Test and Measurement Technology, 2012, 26(2):142.
[7] 杨朝辉, 杨长业, 韩晓锋. 硅压阻固态测风仪的设计与研究[J]. 气象水文海洋仪器, 2005(2):17-21. Yang Zhaohui, Yang Changye, Han Xiaofeng. Research and design of silicon piezoresistive solid state wind detecting instrument[J]. Meteoro-logical, Hydrological and Marine Instruments, 2005(2):17-21.
[8] 杨光永. 基于激光位移测量的光学压力传感器研究[D]. 广州:华南理工大学, 2014. Yang Guangyong. Optical pressure sensor based on laser displacement measurement[D]. Guangzhou:South China University of Technology, 2014.
[9] 刘波. 高灵敏度光纤光栅压力传感器[D]. 武汉:武汉理工大学, 2010. Liu Bo. High sensitivity fiber bragg grating pressure sensor[D]. Wuhan:Wuhan University of Technology, 2010.
[10] 刘云启, 郭转运. 光纤光栅的压力传感特性研究[J]. 光子学报, 1999, 28(5):443-445. Liu Yunqi, Guo Zhuanyun. Pressure properties of fiber bragg grating[J]. Acta Photonica Sinica, 1999, 28(5):443-445.
[11] 薛伟, 王权, 丁建宁. 基于MEMS技术的超微压压力传感器研究进展[J]. 农业机械学报, 2006, 37(3):157-159. Xue Wei, Wang Quan, Ding Jianning. Research status and prospect of ultraminiature pressure sensor based on MEMS technology[J]. Transac-tions of the Chinese Society of Agricultural Machinery, 2006, 37(3):157-159.
[12] 王立代, 熊沈蜀, 周兆英. 基于MEMS压力传感器的微小型空速计[J]. 清华大学学报:自然科学版, 2005, 45(8):1066-1068. Wang Lidai, Xiong Shenshu, Zhou Zhaoying. Miniature airspeed meter based on MEMS pressure sensor[J]. Journal of Tsinghua University(Sci-ence and Technology), 2005, 45(8):1066-1068.
[13] 朱中华, 丁建宁. 微压压力传感器的设计与研究[D]. 江苏:江苏大学, 2008. Zhu Zhonghua, Ding Jianning. Design and research of micropressure sensor[D]. Jiangsu:Jiangsu University, 2008.
[14] 张广斌, 王斌斌, 陈玉林. 超声波风速风向测量装置的设计[J]. 电子设计工程, 2013, 21(17):74-76. Zhang Guangbin, Wang Binbin, Chen Yulin. Design of ultrasonic wind velocity measurement system[J]. Electronic Design Engineering, 2013, 21(17):74-76.
[15] 郑毅. 超声波三维测风系统的开发[D]. 兰州:兰州理工大学, 2014. Zheng Yi. Development of ultrasonic three-dimensional wind measur-ing system[D]. Lanzhou:Lanzhou University of Technology, 2014.
[16] 李翠. 基于三维实时数据的风速短期预测研究[D]. 哈尔滨:哈尔滨理工大学, 2012. Li Cui. Research on wind short-term prediction based on three dimen-sion real-time data[D]. Harbin:Harbin University of Science and Technology, 2012.
[17] 郭星辰. 三维超声波测风系统的设计[D]. 南京:南京信息工程大学, 2013. Guo Xingchen. Design of three-dimensional ultrasonic wind measure-ment system[D]. Nanjing:Nanjing University of Information Science & Technology, 2013.
[18] 张捷光, 齐文新, 齐宇. 三维超声波测风仪原理与应用[J]. 计算机与数字工程, 2013, 41(1):124-126. Zhang Jieguang, Qi Wenxin, Qi Yu. Theory and applications of threedimensional ultrasonic anemometer[J]. Computer &. Digital Engineer-ing, 2013, 41(1):124-126.
[19] 张铭格, 刘学强. 高超声速飞行器嵌入式大气数据传感系统测压点布局[J]. 江苏航空, 2014(3):47-50. Zhang Mingge, Liu Xueqiang. Research on pressure measuring point layout of hypersonic aircraft flush airdata sensing system[J]. Jiangsu Aviation, 2014(3):47-50.
[20] 虞飞, 陶建武, 钱立林. 基于声矢量传感器阵列的空速估计算法[J]. 系统工程与电子技术, 2015, 37(5):1060-1065. Yu Fei, Tao Jianwu, Qian Lilin. Airspeed estimation based on acoustic vector sensor array[J]. Systems Engineering and Electronics, 2015, 37(5):1060-1065.
[21] 方习高. 嵌入式大气数据传感系统的技术及应用研究[D]. 南京:南京航空航天大学, 2007. Fang Xigao. Research on the technique and application of flush airda-ta sensing system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007.
[22] 李然, 王成, 苏国中. 星载激光雷达的发展与应用[J]. 科技导报, 2007, 25(14):58-63. Li Ran, Wang Cheng, Su Guozhong. Development and applications of spaceborne lidar[J]. Science & Technology Review, 2007, 25(14):58-63.
[23] 李峰, 崔希民, 袁德宝. 窗口迭代的克里金法过滤机载lidar点云[J]. 科技导报, 2012, 30(26):24-29. Li Feng, Cui Ximin, Yuan Debao. A window iterative kriging algo-rithm for filtering airborne lidar point clouds[J]. Science & Technology Review, 2012, 30(26):24-29.
[24] 谭莹, 吴夏颖, 丁颖. 多光束测风激光雷达技术分析和比较[J]. 科技导报, 2011, 29(29):22-26. Tan Ying, Wu Xiaying, Ding Ying. Analysis and comparison of multi-ple beam lidars for wind measurement[J]. Science & Technology Re-view, 2011, 29(29):22-26.
[25] Wang G, Dou X, Xia H, et al. Performance of a rayleigh doppler lidar for middle atmosphere wind measurement[J]. Infrared and Laser Engi-neering, 2012, 41(9):2351-2357.
[26] Frehlich R. Errors for space-based doppler lidar wind measurements:Definition, performance, and verification[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(11):1749-1772.
[27] Schmitt N P, Rehm W, Pistner T, et al. The awiator airborne lidar tur-bulence sensor[J]. Aerospace Science and Technology, 2007, 11(7):546-552.
[28] Cézard N, Dolfi-Bouteyre A, Huignard J P, et al. Performance evalua-tion of a dual fringe-imaging Michelson interferometer for air parame-ter measurements with a 355 nm Rayleigh-Mie lidar[J]. Applied Op-tics, 2009, 48(12):2321-2332.
[29] Rogers R R, Hostetler C A, Hair J W. Assessment of the CALIPSO Li-dar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar[J]. Atmospheric Chemistry and Physics, 2011, 11(3):1295-1311.
[30] Tchoryk P, Watkins C B, Nardell C A. Molecular optical air data sys-tem[C]//SPIE Aerosense Conference. Orlando. USA:International Soci-ety for Optics and Photonics, 2001, 4377:194-205.
[31] 沈法华, 舒志峰, 孙东松. 瑞利散射多普勒激光雷达风场反演方法[J]. 物理学报, 2011, 60(6):192-198. Shen Fahua, Shu Zhifeng, Sun Dongsong. Wind retrieval algorithm of Rayleigh Doppler Lidar[J]. Acta Physica Sinica. 2011, 60(6):192-198.
[32] 华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J]. 红外与激光工程, 2008(3):26-32. Hua Dengxing, Song Xiaoquan. Advances in lidar remote sensing tech-niques[J]. Infrared and Laser Engineering, 2008(S3):26-32.
[33] 胡冬冬. 平流层测风激光雷达光学接收机研制及性能分析[D]. 合肥:中国科学技术大学, 2015. Hu Dongdong. Development and analysis of stratospheric wind lidar re-ceiver[D]. Hefei:University of Science and Technology of China, 2015.
[34] 汪丽, 谭林秋, 李仕春. 基于Mach-Zehnder干涉仪条纹成像技术的多普勒测风激光雷达鉴频系统研究及仿真[J]. 量子电子学报, 2013, 30(1):98-102. Wang Li, Tan Linqiu, Li Shichun. Study and simulation of frequency discriminator for doppler wind lidar based on fringe imaging MachZehnder interferometer[J]. Chinese Journal of Quantum Electronics, 2013, 30(1):98-102.
[35] Watkins C B, Richey C J, Tchoryk P. Molecular optical air data sys-tem prototype II[C]//Defense and Security Symposium. Orlando, USA:International Society for Optics and Photonics, 2004, 5412:10-20.
[36] Watkins C B, Richey C J, Tchoryk P. Molecular optical air data sys-tem flight experiment[C]//Society of Photo-optical Engineers Aero-sense 2003 Symposium. Orlando, USA:International Society for Op-tics and Photonics, 2003:236-245.
[37] Dehring M T, Tchoryk P, Wang J. High altitude balloon-based wind li-dar demonstration:from near space to space[C]//Defense and Security Symposium. Orlando, USA:International Society for Optics and Photo-nics, 2006, 62200P:1-9.
[38] Bruneau D. Fringe-imaging Mach-Zehnder interferometer as a spec-tral analyzer for molecular Doppler wind lidar[J]. Applied Optics, 2002, 41(3):503-510.
[39] Liu Z, Kobayashi T. Differential discrimination technique for incoher-ent Doppler lidar to measure atmospheric wind and backscatter ratio[J]. Optical Review, 1996, 3(1):47-52.
文章导航

/