研究论文

近床面风沙输移风洞实验的光学测量研究进展

  • 周晓斯 ,
  • 张洋 ,
  • 王元 ,
  • 李敏
展开
  • 西安交通大学流体机械及工程系, 西安 710049
周晓斯,博士研究生,研究方向为环境动力学及风沙动力学,电子信箱:zhouxs@stu.xjtu.edu.cn

收稿日期: 2016-08-09

  修回日期: 2016-12-12

  网络出版日期: 2017-02-21

基金资助

国家自然科学基金项目(11402190,11272252)

Review of optical measurement of near-surface aeolian sand transport in wind tunnel experiment

  • ZHOU Xiaosi ,
  • ZHANG Yang ,
  • WANG Yuan ,
  • LI Min
Expand
  • Department of Fluid Machinery and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2016-08-09

  Revised date: 2016-12-12

  Online published: 2017-02-21

摘要

近床面风沙输移是一个复杂的多尺度非线性随机过程,一直以来都是风沙物理学领域持续关注的热点问题,对此过程的准确测量则变得尤为关键。本文回顾了近年来针对近床面风沙输移风洞实验的光学测量技术,主要包括激光测速、高速摄影及一些新兴手段,并简要评价了其特点和适用性。最后,对目前存在的问题及未来的发展趋势进行了探讨。

本文引用格式

周晓斯 , 张洋 , 王元 , 李敏 . 近床面风沙输移风洞实验的光学测量研究进展[J]. 科技导报, 2017 , 35(3) : 43 -50 . DOI: 10.3981/j.issn.1000-7857.2017.03.004

Abstract

Near-surface aeolian sand transport is a very complex process which involves the problems of multiple scales, nonlinearity and randomness, so it has always been a focus of the study in wind-blown sand physics. This paper reviews the recent development of optical measurement techniques in wind tunnel experiments, including laser velocity measurement, high-speed photography, and other novel systems. Their properties and applicabilities are briefly analyzed. Finally, some existing problems and future issues in wind tunnel experiment of aeolian sand transport based on the optical measurement are discussed.

参考文献

[1] Pye K, Tsoar H. Aeolian sand and sand dunes[M]. London:Unwin Hyman, 1990.
[2] Anderson R S, Sørensen M, Willetts B B. A review of recent progress in our understanding of aeolian sediment transport[M]//Aeolian Grain Transport 1. Vienna:Springer, 1991:1-19.
[3] Nickling W G, McKenna Neuman C. Aeolian sediment transport[M]//Geomor phology of Desert Environments. New York:Springer, 2009:517-555.
[4] Zheng X J. Mechanics of wind-blown sand movements[M]. Berlin:Springer-Verlag, 2009.
[5] Duran O, Claudin P, Andreotti B. On aeolian transport:Grain-scale interactions, dynamical mechanisms and scaling laws[J]. Aeolian Research, 2011, 3(3):243-270.
[6] Kok J F, Parteli E J R, Michaels T I, et al. The physics of wind-blown sand and dust[J]. Reports on Progress in Physics, 2012, 75(10):106901.
[7] Bagnold R A. The physics of blown sand and desert dunes[M]. London:Methuen, 1941.
[8] Merrison J P. Environmental wind tunnels[M]//Wind Tunnels. Rijeka:Intech, 2011:1-22.
[9] Nalpanis P, Hunt J C R, Barrett C F. Saltating particles over flat beds[J]. Journal of Fluid Mechanics, 1993, 251:661-685.
[10] Zou X Y, Cheng H, Zhang C L, et al. Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain[J]. Geomorphology, 2007, 90(1-2):11-22.
[11] Willetts B B, Rice M A. Collisions in aeolian saltation[J]. Acta Mechanica, 1986, 63(1):255-265.
[12] McEwan I K, Willetts B B, Rice M A. The grain/bed collision in sand transport by wind[J]. Sedimentology, 1992, 39(6):971-981.
[13] Rice M, McEwan I K, Mullins C E. A conceptual model of wind erosion of soil surfaces by saltating particles[J]. Earth Surface Processes and Landforms, 1999, 24(5):383-392.
[14] 董治宝. 中国风沙物理研究50年(I)[J]. 中国沙漠, 2005, 25(3):293-305. Dong Zhibao. 50 years of physical research on Aeolian sand in China (I)[J]. Journal of Desert Research, 2005, 25(3):293-305.
[15] 董治宝, 郑晓静. 中国风沙物理研究50a(II)[J]. 中国沙漠, 2005, 25(6):795-815. Dong Zhibao, Zheng Xiaojing. 50 years of physical research on Aeolian sand in China(II)[J]. Journal of Desert Research, 2005, 25(6):795-815.
[16] Dong Z B, Wang H T, Liu X P, et al. Velocity profile of a sand cloud blowing over a gravel surface[J]. Geomorphology, 2002, 45(3-4):277-289.
[17] Dong Z B, Liu X P, Wang X M, et al. Experimental investigation of the velocity of a sand cloud blowing over a sandy surface[J]. Earth Surface Processes and Landforms, 2004, 29(3):343-358.
[18] Liu X P, Dong Z B. Experimental investigation of the concentration profile of a blowing sand cloud[J]. Geomorphology, 2004, 60(3-4):371-381.
[19] Kang L Q, Guo L J, Gu Z M, et al. Wind tunnel experimental investigation of sand velocity in aeolian sand transport[J]. Geomorphology, 2008, 97(3-4):438-450.
[20] Kang L Q, Guo L J, Liu D Y. Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity[J]. Geomorphology, 2008, 96(1-2):1-15.
[21] Rasmussen K R, Sørensen M. Vertical variation of particle speed and flux density in aeolian saltation:Measurement and modeling[J]. Journal of Geophysical Research, 2008, 113(F2):F02S12.
[22] Dong Z B, Luo W Y, Qian G Q, et al. A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and Forest Meteorology, 2007, 146(1-2):82-93.
[23] Dong Z B, Luo W Y, Qian G Q, et al. A wind tunnel simulation of the turbulence fields behind upright porous wind fences[J]. Journal of Arid Environments, 2010, 74(2):193-207.
[24] Dong Z B, Wang H T, Zhang X H, et al. Height profile of particle concentration in an aeolian saltating cloud:A wind tunnel investigation by PIV MSD[J]. Geophysical Research Letters, 2003, 30(19):2004, doi:10.1029/2003GL017915.
[25] Dong Z B, Qian G Q, Luo W Y, et al. Analysis of the mass flux profiles of an aeolian saltating cloud[J]. Journal of Geophysical Research, 2006, 111(D16):D16111.
[26] Dong Z B, Liu X P, Wang H T, et al. The flux profile of a blowing sand cloud:a wind tunnel investigation[J]. Geomorphology, 2002, 49(3-4):219-230.
[27] Yang P, Dong Z B, Qian G Q, et al. Height profile of the mean velocity of an aeolian saltating cloud:wind tunnel measurements by particle image velocimetry[J]. Geomorphology, 2007, 89(3-4):320-334.
[28] Creyssels M, Dupont P, Moctar A O E, et al. Saltating particles in a turbulent boundary layer:experiment and theory[J]. Journal of Fluid Mechanics, 2009, 625:47-74.
[29] Dong Z B, Qian G Q, Luo W Y, et al. Measuring the velocity of sand particles in an air/particle two-phase flow:A comparison of several commonly used methods[J]. Sciences in Cold and Arid Regions, 2010, 2(3):0185-0197.
[30] 王元, 杨斌, 王大伟. 风沙两相流动光学测量及图像处理技术研究进展[J]. 实验流体力学, 2010, 24(1):55-64. Wang Yuan, Yang Bin, Wang Dawei. Advances in wind-blown sand flow optical measurement and image processing techniques[J]. Journal of experiments in fluid mechanics, 2010, 24(1):55-64.
[31] 杨斌, 王元, 王大伟. 风沙两相流测量技术研究进展[J]. 力学进展, 2006, 36(4):580-590. Yang Bin, Wang Yuan, Wang Dawei. Development of wind-sand flow measurement techniques[J]. Advances in mechanics, 2006, 36(4):580-590.
[32] Han Q J, Qu J J, Liao K T, et al. A wind tunnel study of aeolian sand transport on a wetted sand surface using sands from tropical humid coastal southern China[J]. Environmental Earth Sciences, 2011, 64(5):1375-1385.
[33] Bo T L, Zheng X J, Duan S Z, et al. Analysis of sand particles' liftoff and incident velocities in wind-blown sand flux[J]. Acta Mechanica Sinica, 2013, 29(2):158-165.
[34] Bo T L, Zheng X J, Duan S Z, et al. Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles[J]. The European Physical Journal E, 2013, 36:50.
[35] Zhang J, Shao Y, Huang N. Measurements of dust deposition velocity in a wind-tunnel experiment[J]. Atmospheric Chemistry & Physics, 2014, 14(17):8869-8882.
[36] Zhang W, Wang Y, Lee S J. Two-phase measurements of wind and saltating sand in an atmospheric boundary layer[J]. Geomorphology, 2007, 88(1-2):109-119.
[37] Wang D W, Wang Y, Yang B, et al. Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera[J]. Sedimentology, 2008, 55(2):461-470.
[38] Liu J, Wang Y, Yang B. Wavelet packet analysis of particle response to turbulent fluctuation[J]. Advanced Powder Technology, 2012, 23(3):305-314.
[39] Zhang Y, Wang Y, Jia P. Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(6):1137-1143.
[40] Zhang W, Wang Y, Lee S J. Simultaneous PIV and PTV measure-ments of wind and sand particle velocities[J]. Experiments in Fluids, 2008, 45(2):241-256.
[41] Yang B, Wang Y, Zhang Y. The 3-D spread of saltation sand over a flat bed surface in aeolian sand transport[J]. Advanced Powder Technology, 2009, 20(4):303-309.
[42] Yang B, Wang Y, Liu J. PIV measurements of two phase velocity fields in aeolian sediment transport using fluorescent tracer particles[J]. Measurement, 2011, 44(4):708-716.
[43] Wang Y, Wang D W, Wang L, et al. Measurement of sand creep on a flat sand bed using a high-speed digital camera[J]. Sedimentology, 2009, 56(6):1705-1712.
[44] Zhang Y, Wang Y, Jia P. Investigation of the statistical features of sand creep motion with wind tunnel experiment[J]. Aeolian Research, 2014, 12:1-7.
[45] Zhang Y, Wang Y, Yang B, et al. Measurement of sand creep on a flat sand bed using a high speed digital camera:Mesoscopic features of creeping grains[J]. Sedimentology, 2016, 63(3):629-644.
[46] Zhang Y, Wang Y, Jia P. Evolution of downsized crescent-shaped dune in wind tunnel experiment[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(1):143-151.
[47] Jia P, Wang Y, Zhang Y. Improvement in the independence of relax-ation method-based particle tracking velocimetry[J]. Measurement Sci-ence and Technology, 2013, 24(5):055301.
[48] Zhang Y, Wang Y, Yang B. Improvement of the delaunay-tessellation particle tracking algorithm in the flow visualization research[J]. Applied Mechanics and Materials, 2013, 411-414:2134-2137.
[49] Zhang Y, Wang Y, Jia P. Improving the Delaunay tessellation particle tracking algorithm in the three-dimensional field[J]. Measurement, 2014, 49:1-14.
[50] Zhang Y, Wang Y, He W B, et al. Application of a novel particle tracking algorithm in the flow visualization of an artificial abdominal aortic aneurysm[J]. Bio-Medical Materials and Engineering, 2014, 24(6):2585-2591.
[51] Zhang Y, Wang Y, Yang B, et al. A particle tracking velocimetry algorithm based on the voronoi diagram[J]. Measurement Science and Technology, 2015, 26(7):075302.
[52] Beladjine D, Ammi M, Oger L, et al. Collision process between an incident bead and a three-dimensional granular packing[J]. Physical Review E, 2007, 75(6):061305.
[53] Ammi M, Oger L, Beladjine D, et al. Three-dimensional analysis of the collision process of a bead on a granular packing[J]. Physical Review E, 2009, 79(2):021305.
[54] Rasmussen K R, Valance A, Merrison J. Laboratory studies of aeolian sediment transport processes on planetary surfaces[J]. Geomorphology, 2015, 244:74-94.
[55] Wang Z T, Zhang Q H, Dong Z B. A wind tunnel investigation on the transverse motion of aeolian sand[J]. Sciences in Cold and Arid Regions, 2011, 3(1):0013-0016.
[56] Ho T D, Valance A, Dupont P, et al. Aeolian sand transport:Length and height distributions of saltation trajectories[J]. Aeolian Research, 2014, 12:65-74.
[57] Ho T D, Dupont P, Moctar A O E, et al. Particle velocity distribution in saltation transport[J]. Physical Review E, 2012, 85(5):052301.
[58] Zhang N, Lee S J, Chen T G. Trajectories of saltating sand particles behind a porous fence[J]. Geomorphology, 2015, 228:608-616.
[59] Zhang N, Kang J H, Lee S J. Wind tunnel observation on the effect of a porous wind fence on shelter of saltating sand particles[J]. Geomorphology, 2010, 120(3-4):224-232.
[60] Greeley R, Iversen J D. Wind as a geological process on Earth, Mars, Venus and Titan[M]. Cambridge:Cambridge University Press, 1985.
[61] Holstein-Rathlou C, Merrison J P, Iversen J J, et al. An environmen-tal wind tunnel facility for testing meteorological sensor systems[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):447-457.
[62] Merrison J P. Sand transport, erosion and granular electrification[J]. Aeolian Research, 2012, 4:1-16.
[63] Hersen P. On the crescentic shape of barchan dunes[J]. The European Physical Journal B, 2004, 37(4):507-514.
[64] 贾攀, 王元, 张洋. 缩尺沙丘演化特性的风洞实验研究[J]. 西安交通大学学报, 2013, 47(5):67-71. Jia Pan, Wang Yuan, Zhang Yang. Experiment on evolution of downsized dunes in wind tunnel[J]. Journal of Xi'an Jiaotong University, 2013, 47(5):67-71.
[65] Barchyn T E, Hugenholtz C H, Li B L, et al. From particle counts to flux:Wind tunnel testing and calibration of the ‘Wenglor’ aeolian sediment transport sensor[J]. Aeolian Research, 2014, 15:311-318.
[66] Butterfield G R. Grain transport rates in steady and unsteady turbulent airflows[J]. Acta Mechanica Supplementum, 1991, 1:97-122.
[67] Rasmussen K R, Sørensen M. Aeolian mass transport near the saltation threshold[J]. Earth Surface Processes and Landforms, 1999, 24(5):413-422.
[68] Butterfield G R. Near-bed mass flux profiles in aeolian sand transport:High-resolution measurements in a wind tunnel[J]. Earth Surface Processes and Landforms, 1999, 24(5):393-412.
[69] 杨斌, 王元, 王大伟. 风沙流中沙粒相输移的测量[J]. 西安交通大学学报, 2006, 40(7):846-850. Yang Bin, Wang Yuan, Wang Dawei. Particle image velocimery measurement of sand transport driven by wind in wind tunnel[J]. Journal of Xi'an Jiaotong University, 2006, 40(7):846-850.
[70] 杨斌, 王元, 刘江, 等. 风沙流中沙粒相浓度的高频测量[J]. 实验流体力学, 2010, 24(5):47-50. Yang Bin, Wang Yuan, Liu Jiang, et al. High-frequency measurement of the sand phase's concentration in wind-sand flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5):47-50.
[71] 杨斌, 张伟, 张洋, 等. 非定常风沙流中风速脉动对沙粒相瞬时浓度影响的实验研究[J]. 实验流体力学, 2013, 27(3):47-50. Yang Bin, Zhang Wei, Zhang Yang, et al. Experiment study of the wind fluctuation's effect on the sand concentration in unsteady windsand flow[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):47-50.
[72] Butterfield G R. Transitional behaviour of saltation:Wind tunnel observations of unsteady winds[J]. Journal of Arid Environments, 1998, 39(3):377-394.
[73] Lorenz R D, Zimbelman J R. Dune worlds:How windblown sand shapes planetary landscapes[M]. Berlin:Springer-Verlag, 2014.
文章导航

/