[1] International Agency for Research on Cancer. Some drinking-water disinfectants and contaminants, including arsenic[R]. Geneva:WHO, 2004.
[2] Ng J C. Environmental contamination of arsenic and its toxicological impact on humans[J]. Environmental Chemistry, 2005, 2(3):146-160.
[3] World Health Organization. Arsenic compounds, environmental health criteria 224[R]. Geneva:WHO, 1998.
[4] Meharg A A. Arsenic in rice-understanding a new disaster for SouthEast Asia[J]. Trends in Plant Science, 2004, 9(9):415-417.
[5] Hossain M F. Arsenic contamination in Bangladesh-an overview[J]. Agriculture, Ecosystems & Environment, 2006, 113(1-4):1-16.
[6] Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49:750-759.
[7] 《中国环境年鉴》 编辑委员会. 中国环境年鉴[M]. 北京:中国环境科学出版社, 2011:22. The China Environment Yearbook Editing Committee. China's environmental yearbook[M]. Beijing:China Environment Yearbook Publisher, 2011:22.
[8] Luo L, Ma Y B, Zhang S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8):2524-2530.
[9] Wu F Y, Ye Z H, Wu S C, et al. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance[J]. Planta, 2007, 226(6):1363-1378.
[10] Zhu Y G, Sun G X, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science & Technology, 2008, 42(13):5008-5013.
[11] 曾希柏, 苏世鸣, 吴翠霞, 等. 农田土壤中砷的来源及调控研究与展望[J]. 中国农业科技导报, 2014, 16(2):85-91. Zeng Xibai, Su Shiming, Wu Cuixia, et al. Research and prospect of arsenic source and its regulation in arable land soil[J]. Journal of Agricultural Science and Technology, 2014, 16(2):85-91.
[12] Liao X Y, Chen T B, Xie H, et al. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China[J]. Environment International, 2005, 31:791-798.
[13] Williams P N, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science & Technology, 2007, 41(19):6854-6859.
[14] Chowdhury U K, Biswas B K, Roychowdhury T, et al. Groundwater arsenic contamination in Bangladesh and West Bengal, India[J]. Environmental Health Perspectives, 2000, 108(5):393-397.
[15] Das D, Chatterjee A, Mandal B K, et al. Arsenic in ground-water in 6 districts of West Bengal, India-the biggest arsenic calamity in the world. 2. arsenic concentration in drinking-water, hair, nails, urine, skin-scale and liver-tissue (biopsy) of the affected people[J]. Analyst, 1995, 120(3):917-924.
[16] Wenzel W W, Adriano D C, Salt D, et al. Phytoremediation:A plantmicrobe-based remediation system[M]//Adriano D C, Bollag J M, Frankenberger W T J, Sims R C, eds. Bioremediation of Contaminated Soils. Agronomy Monograph No. 37. Madison, WI, USA, 1999:456-508.
[17] Kramer U. Phytoremediation:novel approaches to cleaning up polluted soils[J]. Current Opinion in Biotechnology, 2005, 16(2):133-141.
[18] Van Nevel L, Mertens J, Oorts K, et al. Phytoextraction of metals from soils:How far from practice?[J] Environmental Pollution, 2007, 150(1):34-40.
[19] Marques A P G C, Rangel A O S S, Castro P M L. Remediation of heavy metal contaminated soils:Phytoremediation as a potentially promising clean-up technology[J]. Critical Reviews in Environmental Science and Technology, 2009, 39(8):622-654.
[20] Chen T B, Wei Z Y, Huang Z C, et al. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 2002, 47(11):901-905.
[21] Leduc D L, Terry N. Phytoremediation of toxic trace elements in soil and water[J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32(11/12):514-520.
[22] Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409:579.
[23] Wu F Y, Ye Z H, Wu S C, et al. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L from China[J]. Environmental Pollution, 2009, 157:2394-2404.
[24] Van Der Ent A, Baker A J M, Reeves R D, et al. Hyperaccumulators of metal and metalloid trace elements:facts and fiction[J]. Plant and Soil, 2013, 362(1/2):319-334.
[25] Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land[J]. Environmental Pollution, 2002, 18(3):453-461.
[26] Zhao F J, Durham S J, Mcgrath S P. Arsenic hyperaccumulation by different fern species[J]. New Phytologist, 2002, 156(1):27-31.
[27] Meharg A A. Variation in arsenic accumulation-hyperaccumulation in ferns and their allies[J]. New Phytologist, 2003, 157(1):25-31.
[28] Du W B, Li Z A, Zou B, et al. Pteris multifida Poir., a new arsenic hyperaccumulator:Characteristics and potential[J]. International Journal Environment and Pollution, 2005, 23(4):388-396.
[29] Srivastava M, Ma L Q, Santos J A G. Three new arsenic hyperaccumulating ferns[J]. Science of the Total Environment, 2006, 364(1-3):24-31.
[30] Wang H B, Ye Z H, Shu W S, et al. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China:Field survey[J]. International Journal of Phytoremediation, 2006, 8(1):1-11.
[31] Wang H B, Wong M H, Lan C Y, et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution, 2007, 145(1):225-233.
[32] Caille N, Zhao F J, Mcgrath S P. Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula[J]. New Phytologist, 2005, 165(3):755-761.
[33] Tu C, Ma L Q, Bondada B. Arsenic accumulation in the hyperaccumu-lator Chinese brake and its utilization potential for phytoremediation[J]. Journal of Environmental Quality, 2002, 31(5):1671-1675.
[34] Fayiga A O, Ma L Q, Santos J, et al. Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system[J]. International Journal of Phytoremediation, 2005, 7(3):231-240.
[35] Poynton C Y, Huang J W W, Blaylock M J, et al. Mechanisms of arsenic hyperaccumulation in Pteris species:Root as influx and translocation[J]. Planta, 2004, 219(6):1080-1088.
[36] Kertulis G M, Ma L Q, Macdonald G E, et al. Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap[J]. Environmental and Experimental Botany, 2005, 54(3):239-247.
[37] Wang J R, Zhao F J, Meharg A A, et al. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation[J]. Plant Physiology, 2002, 130(3):1552-1561.
[38] Mathews S, Rathinasabapathi B, Ma L Q. Uptake and translocation of arsenite by Pteris vittata L.:Effects of glycerol, antimonite and silver[J]. Environmental Pollution, 2011, 159(12):3490-3495
[39] Chen T B, Yan X L, Liao X Y, et al. Subcellular distribution and compartmentalization of arsenic in Pteris vittata L.[J]. Chinese Science Bulletin, 2005, 50(24):2843-2849.
[40] Pickering I J, Gumaelius L, Harris H H, et al. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern[J]. Environmental Science and Technology, 2006, 40(16):5010-5014.
[41] Lombi E, Zhao F J, Fuhrmann M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata[J]. New Phytologist, 2002, 156(2):195-203.
[42] Rathinasabapathi B, Rangasamy M, Froeba J, et al. Arsenic hyperaccu-mulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory[J]. New Phytologist, 2007, 175(2):363-369.
[43] Mathews S, Ma L Q, Rathinasabapathib B, et al. Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L.[J]. Environmental and Experimental Botany, 2009, 65(2-3):282-286.
[44] Meharg A A, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J]. New Phytologist, 2002, 154(1):29-43.
[45] Hartley-Whitaker J, Woods C, Meharg A A. Is differential phytochela-tin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus?[J]. New Phytologist, 2002, 155(2):219-225.
[46] Hartley-Whitaker J, Ainsworth G, Vooijs R, et al. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus[J]. Plant Physiology, 2001, 126(1):299-306.
[47] Su Y H, Mcgrath S P, Zhu Y G, et al. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata[J]. New Phytologist, 2008, 180(2):434-441.
[48] Tu S, Ma L Q, Macdonald G E, et al. Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L.[J]. Environmental and Experimental Botany, 2004, 51(2):121-131.
[49] Duan G L, Zhu Y G, Tong Y P, et al. Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator[J]. Plant Physiology, 2005, 138(1):461-469.
[50] Ellis D R, Gumaelius L, Indriolo E, et al. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata[J]. Plant Physiology, 2006, 141(4):1544-1554.
[51] Indriolo E, Na G, Ellis D, et al. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants[J]. Plant Cell, 2010, 22(6):2045-2057.
[52] Yang X X, Chen H, Dai X J, et al. Evidence of vacuolar compartmen-talization of arsenic in the hyperaccumulator Pteris vittata[J]. Chinese Science Bulletin, 2009, 54(22):4229-4233.
[53] Zhao F J, Wang J R, Barker J H A, et al. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata[J]. New Phytologist, 2003, 159(2):403-410.
[54] Turesson G. The species and the variety as ecological units[J]. Hereditas, 1922, 3(1):100-113.
[55] Briggs D, Walters S M. Plant variation and evolution[M]. Cambridge:Cambridge University Press, 1997.
[56] 骆世明. 农业生态学[M]. 北京:中国农业出版社, 2001:27-29. Luo Shiming. Agricultural ecology[M]. Beijing:China Agriculture Press, 2001:27-29.
[57] Kristina M H, Susan J M. Plant ecotypes:genetic differentiation in the age of ecological restoration[J]. Trends in Ecology and Evolution, 2003, 18(3):147-155.
[58] John K M, Caroline E C, Susan H, et al.‘How Local Is Local?’-A review of practical and conceptual issues in the genetics of restoration[J]. Restoration Ecology, 2005, 13(3):432-440.
[59] Wu F Y, Deng D, Wu S C, et al. Arsenic tolerance, uptake, and accumulation by nonmetallicolous and metallicolous population of Pteris vittata L.[J]. Environmental Science and Pollution Research, 2015, 22(12):8911-8918.
[60] Wan X M, Lei M, Liu Y R, et al. A comparison of arsenic accumula-tion and tolerance among four populations of Pteris vittata from habi-tats with a gradient of arsenic concentration[J]. Science of the Total Environment, 2013, 442:143-151.
[61] Wu F Y, Zhakypbek Y Z, Bi Y L, et al. Effects of Pb and Zn on As accumulation in nonmetallicolous and metallicolous populations of Pteris vittata L.[J]. Communications in Soil Science and Plant Analysis, 2013, 44(19):2839-2851.
[62] Wu F Y, Ye Z H, Wong M H. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L.[J]. Chemosphere, 2009, 76(9):1258-1264.
[63] 吴福勇, 毕银丽, 郭一飞, 等. 不同生态型摩西球囊霉菌株对蜈蚣草砷吸收的影响[J]. 生态学杂志, 2013, 32(6):1539-1544. Wu Fuyong, Bi Yinli, Guo Yifei, et al. Effects of different ecotype Glomus mosseae isolates on arsenic uptake by Pteris vittata[J]. Chinese Journal of Ecology, 2013, 32(6):1539-1544.
[64] Lombi E, Zhao F J, Dunham S J, et al. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense[J]. New Phytologist, 2000, 145(1):11-20.
[65] Zhao F J, Dunham S J, McGrath S P. Arsenic hyperaccumulation by different fern species[J]. New Phytologist, 2002, 156(1):27-31.
[66] Wei C Y, Sun X, Wang C, et al. Factors influencing arsenic accumula-tion by Pteris vittata:A comparative field study at two sites[J]. Envi-ron Pollution, 2006, 141(3):488-493.