脑胶质瘤是颅内最常见的原发性恶性肿瘤,具有多克隆起源、高度异质性及放化疗耐药等特性,导致患者预后极差。经典组织病理学分型往往忽视恶性肿瘤的高度异质性,难以满足肿瘤精准医疗的要求。因此,建立以经典组织病理学为基础、肿瘤标志物检测为核心的分子病理体系迫在眉睫。本文介绍了高通量技术的发展及分子生物学技术的进步,以及多维组学的脑胶质瘤分子分型及标志物的研究进展,和分子病理指导下的胶质瘤个体化治疗。
The glioma is the most common and lethal malignant tumor in the central nervous system. The malignant progression and the poor prognosis could be traced to its polyclonal origin, the heterogeneity and the chemo-/radio-therapy resistance. The classical pathology is based on the morphology criteria, which could not reflect the genetic alterations and has a limited prognostic implication. It is an urgently task to construct the histology and the molecular biomarker based the detection system. With the development of the high-throughput and biological technique, great progresses have been made in the identification of the multi-omics-based classification and the detection of the biomarker, to provide a basis for the regulatory network exploration, the target discovering, the drug selection and the clinical application.
[1] Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Letters, 2016, 375(2):263-273.
[2] Uhm J. Comprehensive genomic characterization defines human glioblas-toma genes and core pathways[J]. Nature, 2008, 455(7216):1061-1068.
[3] Verhaak R G, Hoadley K A, Purdom E, et al. Integrated genomic analy-sis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1[J]. Cancer Cell, 2010, 17(1):98-110.
[4] Noushmehr H, Weisenberger D J, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of gli-oma[J]. Cancer Cell, 2010, 17(5):510-522.
[5] Ceccarelli M, Barthel F P, Malta T M, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glio-ma[J]. Cell, 2016, 164(3):550-563.
[6] Yan W, Zhang W, You G, et al. Molecular classification of gliomas based on whole genome gene expression:A systematic report of 225 samples from the Chinese Glioma Cooperative Group[J]. Neuro Oncolo-gy, 2012, 14(12):1432-1440.
[7] Sun Y, Zhang W, Chen D, et al. A glioma classification scheme based on coexpression modules of EGFR and PDGFRA[J]. PNAS, 2014, 111(9):3538-3543.
[8] Louis D N, Perry A, Reifenberger G, et al. The 2016 World Health Or-ganization classification of tumors of the Central Nervous System:A summary[J]. Acta Neuropathologica, 2016, 131(6):803-820.
[9] 《中国中枢神经系统胶质瘤诊断和治疗指南》 编写组. 中国中枢神经系统胶质瘤诊断与治疗指南(2015)[J]. 中华医学杂志, 2016(7):485-509. Editorial committee of Chinese central nervous system glioma diagnos-tic and treatment guidelines. Chinese central nervous system glioma di-agnostic and treatment guidelines(2015)[J]. National Medical Journal of China, 2016(7):485-509.
[10] 中国脑胶质瘤协作组, 中国脑胶质瘤基因组图谱计划. 中国脑胶质瘤分子诊疗指南[J]. 中华神经外科杂志, 2014, 30(5):435-444. Chinese Glioma Cooperation Group (CGCG), Chinese Glioma Genome Atlas (CGGA). Molecular diagnostic and therapeutic guidelines in Chi-na[J]. Chinese Journal of Neurosurgery, 2014, 30(5):435-444.
[11] Zhang W, Zhang J, Hoadley K, et al. miR-181d:A predictive glioblas-toma biomarker that downregulates MGMT expression[J]. Neuro Oncol-ogy, 2012, 14(6):712-719.
[12] Liu C, Wen J, Meng Y, et al. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression[J]. Advanced Materials, 2015, 27(2):292-297.