研究论文

MicroRNA及其靶基因在糖尿病肾病小鼠肾脏的表达

  • 杨雪唯, 梁小弟, 努尔斯曼古丽·奥斯曼, 陆剑飞, 关亚群, 焦谊
展开
  • 新疆医科大学基础医学院, 乌鲁木齐 830011
杨雪唯,硕士研究生,研究方向为microRNA与糖尿病肾病,电子信箱:568910956@qq.com

收稿日期: 2016-09-09

  修回日期: 2017-01-20

  网络出版日期: 2017-02-28

基金资助

国家自然科学基金项目(81460162);高等学校科研计划项目(XJEDU2014I021)

Expression of microRNA and target gene in kidney of diabetic nephropathy mice

  • YANG Xuewei, LIANG Xiaodi, NUERSIMANGULI Aosiman, LU Jianfei, GUAN Yaqun, JIAO Yi
Expand
  • Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, China

Received date: 2016-09-09

  Revised date: 2017-01-20

  Online published: 2017-02-28

摘要

验证与糖尿病肾病小鼠肾脏相关的microRNAs的表达并运用实时荧光定量PCR分析靶基因与糖尿病肾病的关系。以db/db小鼠为模型组(DN组),db/m小鼠为正常组(NC组),定期测量小鼠的体重、血糖、甘油三酯、总胆固醇及24 h尿蛋白排泄率。留取DN小鼠与NC小鼠肾脏组织,检测肾脏组织形态学染色及实时荧光定量PCR(qRT-PCR)。qRT-PCR验证差异表达的microRNAs及其靶基因的mRNA表达水平。血糖、24 h尿蛋白排泄率结果表明糖尿病肾病动物模型构建成功。与NC小鼠相比,DN小鼠肾脏miR-196a、miR-21、miR-200b表达明显升高,且差异有统计学意义(P<0.05)。miR-196a、miR-200b、miR-21的表达水平与血糖、甘油三酯、总胆固醇、24 h尿蛋白排泄率存在正相关关系(P<0.05)。利用miRNAs数据库预测miR-196a的靶基因有ANX1、HOXB7、PTEN、FOXO1、HOXB8、HOXA5等。与NC组比较,DN组ANX1、FOXO1的mRNA表达水平降低,且差异有统计学意义(P<0.05)。同时ANX1、FOXO1与24 h尿蛋白排泄率存在正相关(P<0.05)。MiR-196a可能通过调节ANX1、FOXO1的表达水平来参与糖尿病肾病的发生发展。

本文引用格式

杨雪唯, 梁小弟, 努尔斯曼古丽·奥斯曼, 陆剑飞, 关亚群, 焦谊 . MicroRNA及其靶基因在糖尿病肾病小鼠肾脏的表达[J]. 科技导报, 2017 , 35(4) : 84 -89 . DOI: 10.3981/j.issn.1000-7857.2017.04.015

Abstract

In this paper, the expression of microRNAs in diabetic nephropathy is verified and the relationship between the target genes and the diabetic nephropathy is analyzed by qRT-PCR. With db/db mice as the model group (DN group) and db/m mice as normal group (NC group), we measure the weight, the blood glucose, the triglyceride, the total cholesterol and the 24 h urinary albumin excretion rate in every mice. The renal tissue from the kidney of the DN and NC mice is taken for pathological examination and qRT-PCR. The difference of the expression levels of microRNAs is confirmed by qRT-PCR, and then the mRNA expression of the target genes is verified. The DN animal model is successfully constructed according to the blood glucose and the 24 h urinary albumin excretion rate results. The expression levels of miR-196a, miR-21 and miR-200b are significantly increased in the DN mice compared with the NC mice, and the difference is statistically significant(P<0.05).The expression levels of miR-196a, miR-200b and miR-21 are positively correlated with the level of the blood glucose, the triglyceride, the total cholesterol and the 24h urinary protein excretion rate. The microRNAs database is used to predict the target genes of miR-196a, including ANX1, HOXB7, PTEN, FOXO1, HOXB8 and HOXA5. The expression levels of the ANX1 and the FOXO1 are significantly lower in the DN mice compared with the NC group, and the difference is statistically significant(P<0.05). There is a positive correlation between the ANX1, the FOXO1 and the 24 h urinary protein excretion rate. It is concluded that miR-196a may be involved in the development of the diabetic nephropathy to regulate the expressions of the ANX1 and the FOXO1.

参考文献

[1] Mehdi U F, Adams-Huet B, Raskin P, et al. Addition of angiotensin re-ceptor blockade or mineralocorticoid antagonism to maximal angioten-sin-converting enzyme inhibition in diabetic nephropathy[J]. Journal of the American Society of Nephrology, 2009, 20(12):2641-2650.
[2] Chow F Y, Nikolic-Paterson D J, Ozols E, et al. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 dia-betic db/db mice[J]. Journal of the American Society of Nephrology, 2005, 16(6):1711-1722.
[3] Dronavalli S, Duka I, Bakris G L. The pathogenesis of diabetic nephrop-athy[J]. Nature Clinical Practice Endocrinology & Metabolism, 2008, 4(8):444-452.
[4] Mora C, Navarro J F. Inflammation and pathogenesis of diabetic ne-phropathy[J]. Metabolism, 2004, 53(2):265-266.
[5] Bartel D P. MicroRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[6] Ambros V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006):350-355.
[7] Farh K K, Grimson A, Jan C, et al. The widespread impact of mammali-an MicroRNAs on mRNA repression and evolution[J]. Science, 2005, 310(5755):1817-1821.
[8] Dehwah M A, Xu A, Huang Q. MicroRNAs and type 2 diabetes/obesity[J]. Journal of Genetics and Genomics, 2012, 39(1):11-18.
[9] Deshpande S D, Putta S, Wang M, et al. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy[J]. Diabetes, 2013, 62(9):3151-3162.
[10] Alvarez M L, Distefano J K. The role of non-coding RNAs in diabetic nephropathy:Potential applications as biomarkers for disease develop-ment and progression[J]. Diabetes Research and Clinical Practice, 2013, 99(1):1-11.
[11] Ordas A, Kanwal Z, Lindenberg V, et al. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Sal-monella typhimurium infection[J]. BMC genomics, 2013, 14(1):696.
[12] Bhatt K, Kato M, Natarajan R. Mini-review:Emerging roles of microR-NAs in the pathophysiology of renal diseases[J]. American Journal of Physiology Renal Physiology, 2016, 310(2):F109-F118.
[13] Sharma K, McCue P, Dunn S R. Diabetic kidney disease in the db/db mouse[J]. American Journal of Physiology Renal Physiology, 2003, 284(6):F1138-F1144.
[14] 姜华生, 刘建社, 朱忠华, 等. 坎地沙坦对糖尿病肾病小鼠血清和糖皮质激素诱导的蛋白激酶1表达的影响及意义[J]. 中国药理学通报, 2006, 22(5):547-550. Jiang Huasheng, Liu Jianshe, Zhu Zhonghua, et al. The significance of candesartan on diabetic nephropathy mice induced by serum and glucocorticoid protein kinase 1 expression[J]. Chinese Pharmacological Bulletin, 2006, 22(5):547-550.
[15] 戴先成, 柴智锋, 徐永城, 等. Trizol法大鼠心肌总RNA提取方法探讨[J]. 刑事技术, 2014, 39(3):15-16. Dai Xiancheng, Chai Zhifeng, Xu Yongcheng, et al. Study on extrac-tion method of total RNA from rat heart by Trizol[J]. Forensic Science and Technology, 2014(3):15-16.
[16] Choudhury D, Tuncel M, Levi M. Diabetic nephropathy-A multifacet-ed target of new therapies[J]. Discovery Medicine, 2010, 10(54):406-415.
[17] Dey N, Das F, Mariappan M M, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pa-thology indiabetes[J]. Journal of Biological Chemistry, 2011, 286(29):25586-25603.
[18] Zhong X, Chung A C, Chen H Y, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis[J]. Journal of the American Society Nephrology, 2011, 22(9):1668-1681.
[19] Zarjou A, Yang S, Abraham E, et al. Identification of a microRNA sig-nature in renal fibrosis:Role of miR-21[J]. American Journal of Physi-ology Renal Physiology, 2011, 301(4):F793-F801.
[20] Zhang Y, Xiao H Q, Wang Y, et al. Differential expression and thera-peutic efficacy of microRNA-346 in diabetic nephropathy mice[J]. Ex-perimental and Therapeutic Medicine, 2015, 10(1):106-112.
[21] Facio FN Jr, Facio M F, Spessoto L F, et al. Anti-inflammatory and anti-fibrotic effects of annexin1 on erectile function after cavernous nerer injury in rats[J]. Internatinal Journal of Impotence Research, 2016, 28(6):221-227.
[22] Horlacher T, Noti C, de Paz JL, et al. Characterizaton of annexin-A1 glycan binding reveals binding to highly sulfated glycans with prefer-ence for highly sulfated heparan sulfate and heparin[J]. Biochemistry, 2011, 50(13):2650-2659.
[23] Bizzarro V, Fontanella B, Franceschelli S, et al. Role of Annexin A1 in mouse myoblast cell differentiation[J]. Journal of Cellular Physiolo-gy, 2010, 224(3):757-765.
[24] DAcunto C W, Fontanella B, Rodriquez M, et al. Histone deacetylase inhibitor FR235222 sensitizes human prostate adenocarcinoma cells to apoptosis through up-regulation of Annexin A1[J]. Cancer Letters, 2010, 295(1):85-91.
[25] Luthra R, Singh RR, Luthra MG, et al. MicroRNA-196a targets annex-in A1:A microRNA-mediated mechanism of annexin A1 downregula-tion in cancers[J]. Oncogene, 2008, 27(52):6667-6678.
[26] Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors[J]. Cancer Research, 2012, 72(5):1126-1136.
[27] Arden K C. Multiple roles of FOXO transcription factors in mammali-an cells point to multiple roles in cancer[J]. Experimental Gerontolo-gy, 2006, 41(8):709-717.
[28] Wu Z, Sun H, Zeng W, et al. Upregulation of MircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1[J]. PLoS One, 2012, 7(9):e45825.
[29] Hannenhalli S, Kaestner K H. The evolution of Fox genes and their role in development and disease[J]. Nature Reviews Genetics, 2009, 10(4):233-240.
[30] Wu L, Zhang Y, Qin G, et al. The effect of resveratrol on FoxO1 ex-pression in kidneys of diabetic nephropathy rats[J]. Molecular Biology Reports, 2012, 39(9):9085-9093.
[31] 吉鸿飞, 秦贵军, 张伟伟, 等. 叉头状转录因子O1对高糖培养大鼠肾小球系膜细胞氧化应激的影响[J]. 中华糖尿病杂志, 2012, 4(11):681-685. Ji Hongfei, Qin Guijun, Zhang Weiwei, et al. Effects of Foxo1 on oxi-dative stress in rat glomerular mesangial cells cultured with high glu-cose[J]. Chinese Journal of Diabetes Mellitus, 2012, 4(11):681-685.
文章导航

/