[1] Pentecost A. Travertine[M]. Berlin Heidelberg:Springer Verlag, 2005:11-18.
[2] Freytet P, Plet A. Modern freshwater microbial carbonates:The phormidium stromatolites (tufa-travertine) of Southeastern Burgundy (Paris basin, France)[J]. Facies, 1996, 34:219-238.
[3] 戴亚南, 刘再华. 响水河钙华形成的水化学特征与碳稳定同位素研究[J]. 热带地理, 2003, 23(4):324-328. Dai Yanan, Liu Zaihua. Hydrochemical features and carbon isotopes in a calcite-precipitating river in Xiaoqikong, Guizhou[J]. Tropical Geography, 2003, 23(4):324-328.
[4] Lavrushin V Y, Kuleshov V N, Kikvadze O E. Travertines of the Northern Caucasus[J]. Lithology and Mineral Resources, 2006, 41(2):137-164.
[5] Kele S, Demény A, Siklósy Z, et al. Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary:Depositional facies and non-equilibrium fractionation[J]. Sedimentary Geology, 2008, 211:53-72.
[6] 李强, 戴亚南, 游省易, 等. 云南白水台钙华沉积成因及主要沉积类型研究[J]. 中国岩溶, 2002, 21(3):178-181. Li Qiang, Dai Yanan, You Shengyi, et al. Study on the feature of tufa deposits in Baishuitai, Yunan[J]. Carsologica Sinica, 2002, 21(3):178-181.
[7] 刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32(1):1-10. Liu Zaihua, Yuan Daoxian, He Shiyi, et al. Origin and forming mechanisms of travertine at Huanglong ravine of Sichuan[J]. Geochemical, 2003, 32(1):1-10.
[8] Shvartsev S L, Lepokurova O E, Kopylova Y G. Geochemical mechanisms of travertine formation from fresh waters in southern Siberia[J]. Russian Geology and Geophysics, 2007, 48:659-667.
[9] Pache M, Reitner J, Arp G, et al. Geochemical evidence for the formation of a large Miocene "travertine" mound at a sublacustrine spring in a soda lake(Wallenstein Castle Rock, Noerdlinger Ries, Germany)[J]. Facies, 2001, 45:211-230.
[10] Das S, Mohanti M. Sedimentology of Holocene tufa carbonate in Orissa state, India[J]. Carbonates and Evaporites, 2005, 20(1):8-13.
[11] Golubic S. Cyclic and noncyclic mechanisms in the formation of travertine[J]. Verhandlungen-Internationale Vereinigung fuer Theoretische und Angewandte Limnologie, 1969, 17:956-961.
[12] Buccino G, D'Argenio B, Ferreri V, et al. The travertines in the lower Tanagro Valley (Campania); geomorphological, sedimentological and geochemical study[J]. Bollettino della Societa Geologica Italiana, 1978, 97(4):617-646.
[13] Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3/4):117-175.
[14] Matsuoka J, Kano A, Oba T, et al. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW-Japan[J]. Earth Planet Science Letters, 2001, 1912(1):31-44.
[15] Kano A, Kawai T, Matsuoka J, et al. High-resolution records of rainfall events from clay bands in tufa[J]. Geology, 2004, 32:793-796.
[16] Andrews J E, Brasier A T. Seasonal records of climatic change in annually laminated tufas:Short review and future prospects[J]. Journal of Quaternary Science, 2005, 20(5):411-421.
[17] Wang H J, Yan H, Liu Z H. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong ravine, China:Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta, 2014, 125:34-48.
[18] Gao J, Zhou X, Fang B. U-series dating of the travertine depositing near the Rongma hot springs in northern Tibet, China, and its paleoclimatic implication[J]. Quaternary International, 2013, 298:98-106.
[19] Pustovoytov K, Riehl S, Hilger H H, et al. Oxygen isotopic composition of fruit carbonate in Lithospermeae and its potential for paleoclimate research in the Mediterranean[J]. Global and Planetary Change, 2010, 71(3-4):258-268.
[20] Brogi A, Capezzuoli E. Travertine deposition and faulting:The faultrelated travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy)[J]. International Journal of Earth Sciences, 2009, 98(4):931-947.
[21] De Filippis L, Anzalone E, Billi A, et al. The origin and growth of a recently-active fissure ridge travertine over a seismic fault, Tivoli, Italy[J]. Geomorphology, 2013, 195:13-26.
[22] Temiz U, Gökten Y E, Eikenberg J. Strike-slip deformation and U/Th dating of travertine deposition:Examples from north Anatolian fault zone, Bolu and Yeniçag basins, Turkey[J]. Quaternary International, 2013, 312:132-140.
[23] 刘再华, 田友萍, 安德军, 等. 世界自然遗产-四川黄龙钙华景观的形成与演化[J]. 地球学报, 2009, 30(6):841-847. Liu Zaihua, Tian Youping, An Dejun, et al. Formation and evolution of the travertine landscape at Huanglong, Sichuan, one of the world natural heritages[J]. Acta Geoscientica Sinica, 2009, 30(6):841-847.
[24] 张金流, 刘再华. 世界遗产——四川黄龙钙华景观研究进展与展望[J]. 地球与环境, 2010, 38(1):78-87. Zhang Jinliu, Liu Zaihua. Progress and future prospect in research on the travertine landscape at Huanglong, Sichuan:A world's heritage site[J]. Earth and Environment, 2010, 38(1):78-87.
[25] Allen C C, Albert F G, Chafetz H S. Microscopic physical biomarkers in carbonate hot springs:Implications in the search for life on Mars[J]. Icarus, 2000, 147:49-67.
[26] Pellicer X M, Linares R, Gutiérrez F. Morpho-stratigraphic characterization of a tufa mound complex in the Spanish Pyrenees using ground penetrating radar and trenching, implications for studies in Mars[J]. Earth and Planetary Science Letters, 2014, 388:197-201.
[27] Pentecost A. British travertines:A review[J]. Proceedings of the Geologists' Association, 1993, 104(1):23-29.
[28] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23):2229-2239. Liu Zaihua. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23):2229-2239.
[29] 牛新生, 刘喜方, 陈文西. 西藏多格错仁南岸钙华地球化学特征与钾盐地质意义[J]. 沉积学报, 2013, 31(6):1031-1040. Niu Xinsheng, Liu Xifang, Chen Wenxi. Travertine in south bank of Dogai Coring, Tibet:Geochemical characteristics and potash geological significance[J]. Acta Sedimentologica Sinica, 2013, 31(6):1031-1040.
[30] 赵元艺, 崔玉斌, 赵希涛. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 2010, 29(1):124-141. Zhao Yuanyi, Cui Yubin, Zhao Xitao. Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 2010, 29(1):124-141.
[31] 覃建勋, 韩鹏, 车晓超, 等. 利用荣玛地区温泉钙华δ18O及微量元素重建西藏全新世以来古气候[J]. 地学前缘, 2014, 21(2):312-322. Qin Jianxun, Han Peng, Che Xiaochao, et al. Resuming the Holocene paleoclimate using δ18O and trace elements of travertine in Rongma area, Tibet[J]. Earth Science Frontiers, 2014, 21(2):312-322.
[32] 侯增谦, 李振清, 曲晓明, 等. 0.5 Ma以来的青藏高原隆升过程——来自冈底斯带热水活动的证据[J]. 中国科学(D辑), 2001, 31(增刊1):27-33. Hou Zengqian, Li Zhenqing, Qu Xiaoming, et al. Uplift processes of the Tibetan Plateau since 0.5 Ma:Evidence from hydrothermal activity in Gangdese belt[J]. Science China (Earth Sciences), 2001, 31(Suppl 1):27-33.
[33] 赵平, 谢鄂军, 多吉, 等. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 2002, 18(4):539-550. Zhao Ping, Xie Ejun, Dor Ji, et al. Geochemical characteristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 2002, 18(4):539-550.
[34] Tapponnier P, Molnar P. Active faulting and tectonics of China[J]. Journal of Geophysical Research, 1977, 82:2905-2930.
[35] Molnar P, Tapponnier P. Active tectonics of Tibet[J]. Journal of Geophysical Research, 1978, 83:5361-5375.
[36] Ni J, York J. Late Cenozoic tectonics of the Tibetan plateau[J]. Journal of Geophysical Research, 1978. 83:5377-5384.
[37] 侯增谦, 李振清. 印度大陆俯冲前缘的可能位置:来自藏南和藏东活动热泉气体He同位素约束[J]. 地质学报. 2004(4):482-493. Hou Zengqian, Li Zhenqing. Possible location for underthrusting front of the Indus Continent:Constraints from Helium isotope of the geothermal gas in southern Tibet and eastern Tibet[J]. Acta Geologica Sinica, 2004(4):482-493.
[38] 李振清, 侯增谦, 聂风军, 等. 藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J]. 地质学报, 2005, 79(1):68-77. Li Zhenqing, Hou Zengqian, Nie Fengjun, et al. Characteristic and distribution of the partial melting layers in the upper crust:Evidence from active hydrothermal fluid in the south Tibet[J]. Acta Geologica Sinica, 2005, 79(1):68-77.
[39] 中国地质大学(武汉)地质调查研究院. 青藏高原及邻区第四纪地质与地貌图说明书[R]. 武汉:中国地质大学地质调查研究院, 2010. Geological Survey of China University of Geosciences. The instruction of Quaternary geological and geomorphologic map of Qinghai-Tibetan Plateau and its adjacent area[R]. Wuhan:Geological Survey of China University of Geosciences, 2010.
[40] 刘再华, Yoshimura K, Inokura Y, 等. 四川黄龙沟天然水中的深源CO2与大规模的钙华沉积[J]. 地球与环境, 2005, 33(2):1-10. Liu Zaihua, Yoshimura K, Inokura Y, et al. Deep-source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong ravines, Sichuan, China[J]. Earth and Environment, 2005, 33(2):1-10.
[41] 孙海龙, 刘再华, 吕保樱, 等. 云南白水台雨水线及钙华δ18O的季节和空间变化特征[J]. 地球化学, 2008, 37(6):542-548. Sun Hailong, Liu Zaihua, Lü Baoying, et al. Meteoric water line and spatiotemporal change in δ18O of the travertine in Baishuitai area[J]. Geochimica, 2008, 37(6):542-548.
[42] 刘再华, 张美良, 游省易, 等. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征:以云南白水台为例[J]. 地球化学, 2004, 33(3):269-278. Liu Zaihua, Zhang Meiliang, You Shengyi, et al. Spatial and diurnal variations of the geochemical indicators in a calcite-precipitating stream-Case study of Baishuitai, Yunnan[J]. Geochimica, 2004, 33(3):269-278.
[43] 刘再华, 李红春, 游镇烽, 等. 云南白水台现代内生钙华微层的特征及其古气候重建意义[J]. 地球学报, 2006, 27(5):479-486. Liu Zaihua, Li Hongchun, You Zhenfeng, et al. Thickness and stable isotopic characteristics of modern seasonal climate controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, Southwest China:Implications for paleoclimate reconstruction[J]. Acta Geoscientica Sinica, 2006, 27(5):479-486.
[44] Wang H J, Yan H, Liu Z H. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong ravine, China:Implications for paleoclimatic interpretations[J]. Geochim Cosmochim Acta, 2014, 125:34-48.
[45] Hudson A M, Quade J. Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau[J]. Geology, 2013, 41:351-354.