专题论文

青藏高原湖泊湖面变迁及影响因素

  • 闫立娟 ,
  • 郑绵平 ,
  • 齐路晶
展开
  • 1. 中国地质科学院, 北京 100037;
    2. 中国地质科学院矿产资源研究所;国土资源部盐湖资源与环境重点实验室, 北京 100037;
    3. 防灾科技学院, 三河 065201
闫立娟,博士,研究方向为遥感应用与湖泊环境,电子信箱:yanlijuanyun@126.com

收稿日期: 2016-11-10

  修回日期: 2016-12-08

  网络出版日期: 2017-03-30

基金资助

国家自然科学基金项目(U1407207,40531002,41603048);中国地质调查局地质调查项目(1212011120046)

Surface area variations of lakes in the Tibetan Plateau and their influencing factors

  • YAN Lijuan ,
  • ZHENG Mianping ,
  • QI Lujing
Expand
  • 1. Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, CAGS Beijing 100037, China;
    3. Institute of Disaster Prevention, Sanhe 065201, China

Received date: 2016-11-10

  Revised date: 2016-12-08

  Online published: 2017-03-30

摘要

湖泊对气候波动有敏感记录。以地理信息系统(GIS)和遥感(RS)技术为基础,从20世纪70年代、90年代、2000年前后和2010年前后4期Landsat遥感影像中,提取青藏高原所有湖泊边界信息,建立青藏高原湖泊空间数据库,并收集了青藏高原47个气象台站的年平均气温和年降雨量资料(1961-2010),研究青藏高原湖泊湖面变迁及其影响因素。结果表明,1973-2010年,青藏高原湖泊个数和总面积呈显著增加的趋势;青藏高原湖泊湖面变迁主要受气温升高、降雨量增加和蒸发量减少的影响;此外,影响青藏高原湖泊湖面动态变化的因素还有冰川分布、人类活动、湖盆形状、补给和排泄区等。

本文引用格式

闫立娟 , 郑绵平 , 齐路晶 . 青藏高原湖泊湖面变迁及影响因素[J]. 科技导报, 2017 , 35(6) : 83 -88 . DOI: 10.3981/j.issn.1000-7857.2017.06.010

Abstract

The levels and the surface areas of lakes are indicators of the climate change and the climate variability. In order to assess the surface area variations of lakes in the Tibetan Plateau and their influencing factors, the surface extent of all lakes in the Tibetan Plateau is extracted from the Landsat remote sensing images of the 1970's, the 1990's, around 2000 and 2010, to develop the lake spatial database based on the RS and GIS technologies. Moreover, the annual average temperature and the annual precipitation from 1961 to 2010 at 47 weather stations are collected. It is shown that the number and the total surface area of the lakes in the Tibetan Plateau increase significantly from 1973 to 2010. The surface area variations of the lakes are mainly influenced by the increasing temperature and precipitation, as well as the decreasing evaporation. Additionally, there are other factors responsible for the changes, i.e., the glaciers, the human activities, the lake basin shape, and the recharge and discharge areas.

参考文献

[1] Zheng M P, Qi W, Jiang X F, et al. Trend of salt lake changes in the background of global warming and tactics for adaptation to the changes[J]. Acta Geologica Sinica, 2004, 78(3):795-807.
[2] 闫立娟, 齐文. 青藏高原湖泊遥感信息提取及湖面动态变化趋势研究[J]. 地球学报, 2012, 33(1):65-74. Yan Lijuan, Qi Wen. Lakes in Tibetan Plateau extraction from remote sensing and their dynamic changes[J]. Acta Geoscientica Sinica, 2012, 33(1):65-74.
[3] Sun F D, Zhao Y Y, Gong P, et al. Monitoring dynamic changes of global land cover types:Fluctuations of major lakes in China every 8 days during 2000-2010[J]. Chinese Science Bulletin, 2014, 59(2):171-189.
[4] Wan W, Xiao P F, Feng X Z, et al. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 2014, 59(10):1021-1035.
[5] Liu J S, Wang S Y, Yu S M, et al. Climate warming and growth of highelevation inland lakes on the Tibetan Plateau[J]. Global and Planetary Change, 2009, 67(3/4):209-217.
[6] 闫立娟, 郑绵平. 我国蒙新地区近40年来湖泊动态变化与气候耦合[J]. 地球学报, 2014, 35(4):463-472. Yan Lijuan, Zheng Mianping. Dynamic changes of lakes in Inner Mongolia-Xinjiang region and the climate interaction in the past forty years[J]. Acta Geoscientica Sinica, 2014, 35(4):463-472.
[7] Zheng M P, Zhao Y Y, Liu J Y. Palaeoclimatic indicators of China's quaternary saline lake sediments and hydrochemistry[J]. Acta Geologica Sinica, 2000, 74(2):259-265.
[8] 闫立娟, 郑绵平, 魏乐军. 近40年来青藏高原湖泊变迁及其对气候变化的响应[J]. 地学前缘, 2016, 23(4):310-323. Yan Lijuan, Zheng Mianping, Wei Lejun. Change of the lakes in Tibetan plateau and its response to climate in the past forty yeas[J]. Earth Science Frontiers, 2016, 23(4):310-323.
[9] 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源-汇过程与盆地分析[J]. 地学前缘, 2015, 22(1):9-20. Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1):9-20.
[10] 沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京:科学出版社, 2010:8-9. Shen Ji, Xue Bin, Wu Jinglu, et al. Lake sedimentary and environmental changes[M]. Beijing:Science Press, 2010:8-9.
[11] Du J. Change of temperature in Tibetan Plateau from 1961-2000[J]. Acta Geographica Sinica, 2001, 56(33):690-698.
[12] Niu T, Chen L X, Zhou Z J. The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps[J]. Advances in Atmospheric Sciences, 2004, 21(2):193-203.
[13] Shi Y F, Shen Y P, Kang E, et al. Recent and future climate change in Northwest China[J]. Climatic Change, 2007, 80(3/4):379-393.
[14] You Q L, Kang S C, Pepin N, et al. Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset[J]. Global and Planetary Change, 2010, 72(1):11-24.
[15] 郭任宏, 金晓媚, 王晓林, 等. 基于中等分辨率遥感数据的柴达木盆地实际蒸散量的计算[J]. 地学前缘, 2014, 21(4):107-114. Guo Renhong, Jin Xiaomei, Wang Xiaolin, et al. Actual evapotranspiration estimation in Qaidam Basin based on moderate resolution imaging[J]. Earth Science Frontiers, 2014, 21(4):107-114.
[16] 杜军, 边多, 鲍建华, 等. 藏北高原蒸发皿蒸发量及其影响因素的变化特征[J]. 水科学进展, 2008, 19(6):786-791. Du Jun, Bian Duo, Bao Jianhua, et al. Changes of pan evaporations and its impact factors over northern Tibet in 1971-2006[J]. Advances in Water Science, 2008, 19(6):786-791.
[17] 杜军, 房世波, 唐小萍, 等. 1981-2010年西藏怒江流域潜在蒸发量的时空变化[J]. 气候变化研究进展, 2012, 8(1):35-42. Du Jun, Fang Shibo, Tang Xiaoping, et al. Spatial and temporal changes of potential evaporation over the Nujiang River Basin in Tibet during 1981-2010[J]. Progressus Inquisitiones De Mutatione Climatis, 2012, 8(1):35-42.
[18] 刘敏, 沈彦俊, 曾燕, 等. 近50年中国蒸发皿蒸发量变化趋势及原因[J]. 地理学报, 2009, 64(3):259-269. Liu Min, Shen Yanjun, Zeng Yan, et al. Changing trend of pan evaporation and its cause over the past 50 years in China[J]. Acta Geographica Sinica, 2009, 64(3):259-269.
[19] 李景玉, 张志果, 徐宗学, 等. 影响西藏地区蒸发皿蒸发量的主要气象因素分析[J]. 亚热带资源与环境学报, 2009, 4(4):20-29. LI Jingyu, Zhang Zhiguo, Xu Zongxue, et al. Major meteorological factors affecting pan evaporation in the Tibetan region[J]. Journal of Subtropical Resources and Environment, 2009, 4(4):20-29.
[20] 李岳坦, 李小雁, 崔步礼, 等. 青海湖流域及周边地区蒸发皿蒸发量变化(1961-2007年)及趋势分析[J]. 湖泊科学, 2010, 22(4):616-624. Li Yuetan, Li Xiaoyan, Cui Buli, et al. Trend of pan evaporation and its impact factors over lake Qinghai Basin from 1961 to 2007[J]. Journal of Lake Sciences, 2010, 22(4):616-624.
[21] 申双和, 盛琼. 45年来中国蒸发皿蒸发量的变化特征及其成因[J]. 气象学报, 2008, 66(3):452-460. Shen Shuanghe, Sheng Qiong. Changes in pan evaporation and its cause in China in the last 45 years[J]. Acta Meteorologica Sinica, 2008, 66(3):452-460.
[22] 李治国. 近50 a气候变化背景下青藏高原冰川和湖泊变化[J]. 自然资源学报, 2012, 27(8):1431-1443. Li Zhiguo. Glacier and lake changes across the Tibetan Plateau during the past 50 years of climate change[J]. Journal of Natural Resources, 2012, 27(8):1431-1443.
[23] Yan L J, Zheng M P. The response of lake variations to climate change in the past forty years:A case study of the northeastern Tibetan Plateau and adjacent areas, China[J]. Quaternary International, 2015, 371:31-48.
[24] 郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989:192-236. Zheng Mingping, Xiang Jun, Wei Xinjun, et al. Saline lakes on the Qinghai-Xizang (Tibet) Plateau[M]. Beijing:Science and Technology Press, 1989:192-236.
[25] 郑喜玉, 张明刚, 徐昶, 等. 中国盐湖志[M]. 北京:科学出版社, 2002:29-35. Zheng Xiyu, Zhang Minggang, Xu Chang, et al. Saline lakes in China[M]. Beijing:Science Press, 2002:29-35.
[26] 李均力, 盛永伟. 1976-2009年青藏高原内陆湖泊变化的时空格局与过程[J]. 干旱区研究, 2013, 30(4):571-581. Li Junli, Sheng Yongwei. Spatiotemporal pattern and process of inland lake change in the Qinghai-Tibetan Plateau during the period of 1976-2009[J]. Arid Zone Research, 2013, 30(4):571-581.
文章导航

/