专题论文

基于野外站网络的青藏高原地表过程观测研究

  • 彭萍 ,
  • 朱立平
展开
  • 1. 中国科学院青藏高原研究所环境变化与地表过程重点实验室, 北京 100101;
    2. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101
彭萍,助理研究员,研究方向为青藏高原环境变化,电子信箱:pengping@itpcas.ac.cn

收稿日期: 2016-11-20

  修回日期: 2017-02-11

  网络出版日期: 2017-03-30

基金资助

中国科学院高寒区地表过程与环境变化观测研究网络联盟项目;中国科学院战略性科技先导B类专项项目(XDB03030000)

Observations of land surface processes of the Tibetan Plateau based on the field stations network

  • PENG Ping ,
  • ZHU Liping
Expand
  • 1. Key Laboratory of Tibetan Plateau Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;
    2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China

Received date: 2016-11-20

  Revised date: 2017-02-11

  Online published: 2017-03-30

摘要

由于地形地貌的复杂性,国际对青藏高原及其邻近地区的地表过程观测研究持续关注,中国高寒区地表过程与环境观测研究网络也逐渐形成。整合了中国科学院的17个野外观测站,针对中国高寒区特有的大气、冰川、冻土、湖泊、高寒生态系统等地表过程开展长期观测。通过推动建立规范的观测指标体系,逐渐统一观测仪器设施,开展数据集成与共享等,野外站的观测研究能力得到显著提升,产出了一批具有国际影响力的高水平科研成果,如发现青藏高原降水具有西风、季风和二者过渡区3大模态等,为区域经济社会发展的决策提供了科学依据。未来,野外观测站会统筹长期观测与有限目标的关系,建设高寒网科学数据平台,更好地服务和支撑国家重大科技任务和战略需求。

本文引用格式

彭萍 , 朱立平 . 基于野外站网络的青藏高原地表过程观测研究[J]. 科技导报, 2017 , 35(6) : 97 -102 . DOI: 10.3981/j.issn.1000-7857.2017.06.012

Abstract

Due to the complexity of topography and geomorphology, the worldwide research focus is now on the surface processes of the Qinghai Tibet Plateau and its adjacent areas. The High-cold Region Observation and Research Network for Land Surface Processes & Environment of China (HORN) has gradually formed. It integrates 17 stations of Chinese Academy of Sciences, for long term observations and researches of the land surface processes, including glaciers, permafrost, lakes, alpine ecosystem in the high-cold regions of China. Through the construction of the standard observation index system, the coordination of the observation instruments, the integration and the sharing of the observation data, the HORN has significantly promoted the station-level observation abilities, and played important supporting roles in the studies of the earth system, the resources and the environment sciences on the Tibetan Plateau. Some scientific results of international level have been achieved based upon the station observation data, e.g., it was found that the precipitation of the Tibetan Plateau has 3 modes, the westerly wind, the monsoon and their transition zone. These data has also provided reliable scientific basis for the decision-making of the regional economic and social development. In the future, the field observation station will co-ordinate the long-term observation and the limited objectives, and construct the alpine network of scientific data platform to better serve and support the country's major scientific and technological tasks and strategic needs.

参考文献

[1] Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau:Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4):525-548.
[2] Zhu L P, Lü X M, Wang J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015. doi:10.1038/srep13318.
[3] Lei Y B, Yang K, Wang B, et al. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 2014, 125(2):281-290.
[4] Yang W, Guo X F, Yao T D, et al. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations[J]. Climate Dynamics, 2016, 47(3):805-815.
[5] Shen M G, Sun Z Z, Wang S P, et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade[J]. Proceedings of the National Academy of Sciences, 2013, 110(26):E2329.
[6] Shen M G, Piao S L, Cong N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 2015, 21(10):3647-3656.
[7] Li R C, Luo T X, Mölg T, et al. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall[J]. Scientific reports, 2016. doi:10.1038/srep20985.
[8] Liang E, Wang Y F, Piao S L, et al. Species interactions slow warminginduced upward shifts of treelines on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2016, 113(16):4380-4385.
[9] Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and Forest Meteorology, 2014, 189:11-18.
[10] Shen M G, Piao S L, Jeong S J, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences, 2015, 112(30):9299-9304.
文章导航

/