专题论文

基于生物群集行为的无人机集群控制

  • 段海滨 ,
  • 李沛
展开
  • 北京航空航天大学自动化科学与电气工程学院;飞行器控制一体化技术国防科技重点实验室, 北京 100083
段海滨,教授,研究方向为仿生智能与无人机自主控制,电子信箱:hbduan@buaa.edu.cn

收稿日期: 2016-11-25

  修回日期: 2017-03-02

  网络出版日期: 2017-04-18

基金资助

国家自然科学基金重点项目(61333004)

Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors

  • DUAN Haibin ,
  • LI Pei
Expand
  • School of Automation Science and Electrical Engineering, Beihang University; Science and Technology on Aircraft Control Laboratory, Beijing 100083, China

Received date: 2016-11-25

  Revised date: 2017-03-02

  Online published: 2017-04-18

摘要

生物群集行为是一种普遍存在的自然现象,群体中的个体利用简单的规则、局部的交互,形成了鲁棒性强、自适应度高、可扩展性好的自组织行为,在系统层面体现为智能的涌现。本文首先简要叙述了蚁群、蜂群、鸽群、鱼群等典型的生物群集,并从组织结构的分布式、行为主体的简单性、作用模式的灵活性、系统整体的智能性等方面分析了生物群体智能的特点。然后,介绍了部分具有代表性的无人机集群项目,总结了无人机集群的关键技术,包括集群态势感知、自主编队控制、智能协同决策。最后,从生物群集和无人机集群在直观上的相似性出发,分析了生物群体和无人机集群自主控制的映射关系,并探讨了仿生物群集的无人机集群自主控制中的核心问题。

本文引用格式

段海滨 , 李沛 . 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017 , 35(7) : 17 -25 . DOI: 10.3981/j.issn.1000-7857.2017.07.001

Abstract

Through simple rules and local interactions, social groups exhibit robust, scalable and flexible global behaviors, which are useful for applications in engineering areas. In this paper, we first introduce collective behaviors of biological systems, such as colonies of ants, flocks of birds, colonies of bees and schools of fish,and summarize the properties of these social groups. Then we analyze the key techniques of unmanned aerial vehicle (UAV) swarms, including mass UAV management and control, swarm perception and situation sharing, multiple UAV autonomous formation flight, and swarm cooperative decision making. Afterwards, we briefly sort the UAV swarms that take inspiration from the self-organized behaviors of social animals Finally, we outline open problems and possible research directions in collective motion.

参考文献

[1] 王英勋, 蔡志浩. 无人机的自主飞行控制[J]. 航空制造技术, 2009(8): 26-31. Wang Yingxun, Cai Zhihao. Autonomous flight control of unmanned aerial vehicle[J]. Aeronautical Manufacturing Technology, 2009(8): 26-31.
[2] 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32 (6): 1075-1083. Chen Zongji, Wei Jinzhong, Wang Yingxun, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (6): 1075-1083.
[3] Qiu H X, Chen W, Dou Rui, et al. Fully autonomous flying: from collective motion in bird flocks to unmanned aerial vehicle autonomous swarms[J]. Science China Information Sciences, 2015, 58(12): 1-3.
[4] Duan H B, Li P. Bio-inspired computation in unmanned aerial vehicles[M]. Heidelberg: Springer-Verlag Berlin, 2014.
[5] 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37-43. Niu Yifeng, Xiao Xiangjiang, Ke Guanyan. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science & Technology, 2013, 34(5), 37-43.
[6] Duan H B, Liu S Q. Unmanned air/ground vehicles heterogeneous cooperative techniques: current status and prospects[J]. Science China Technological Sciences, 2010, 53(5): 1349-1355.
[7] Vicsek T, Zafeiris A. Collective motion[J]. Physics Reports, 2012, 517(3-4): 71-140.
[8] 段海滨, 孙昌浩, 史玉回. 群体智能研究进展[J]. 中国自动化学会通讯, 2013, 34(3): 65-74. Duan Haibin, Sun Changhao, Shi Yuhui. Progress in swarm intelligence[J]. Communications of CAA, 2013, 34(3): 65-74.
[9] 段海滨, 张祥银, 徐春芳. 仿生智能计算[M]. 北京: 科学出版社, 2011. Duan Haibin, Zhang Xiangyin, Xu Chunfang. Bio-inspired computing[M]. Beijing: Science Press, 2011.
[10] Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks[J]. Proceedings of the National Academy of Sciences, 2010, 107(26): 11865-11870.
[11] Bialek W, Cavagna A, Giardina I, et al. Social interactions dominate speed control in poising natural flocks near criticality[J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7212-7217.
[12] Vicsek T, Czirok A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226-1229.
[13] Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 29-41.
[14] 段海滨. 蚁群算法原理及其应用[M]. 北京: 科学出版社, 2005. Duan Haibin. Ant colony algorithms: theory and applications[M]. Beijing: Science Press, 2005.
[15] Bonabeau E G, Dorigo M, Theraulaz G. Inspiration for optimization from social insect Behavior[J]. Nature, 2000, 406(6791): 39-42.
[16] Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering[J]. Applied Mathematics and Computation, 2007, 190 (2): 1502-1513.
[17] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471.
[18] Usherwood J R, Stavrou M, Lowe J C, et al. Flying in a flock comes at a cost in pigeons[J]. Nature, 2011, 474(7352): 494-497.
[19] 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10): 1298-1304. Qiu Huaxin, Duan Haibin, Fan Yanming. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory & Applications, 2015, 32(10): 1298-1304.
[20] Duan H, Qiao P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37.
[21] Nagy M, Ákos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290): 890-893.
[22] Swain D T, Couzin I D, Leonard N E. Real-time feedback-controlled robotic fish for behavioral experiments with fish schools[J]. Proceedings of the IEEE, 2012, 100(1): 150-163.
[23] 段海滨, 邵山, 苏丙未, 等. 基于仿生智能的无人作战飞机控制技术发展新思路[J]. 中国科学: 技术科学, 2010, 40(8): 853-860. Duan Haibin, Shao Shan, Su Bingwei, et al. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J]. Science China Technological Sciences, 2010, 40(8): 853-860.
[24] Reynolds C W. Flocks, herds and schools: A distributed behavioral model[J]. Acm Siggraph Computer Graphics, 1987, 21(4): 25-34.
[25] Beni G, Wang J. Swarm intelligence in cellular robotic systems[C]. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26-30, 1989.
[26] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems[M]. Oxford: Oxford University Press, 1999.
[27] Millonas M. Swarm, phase transitions, and collective intelligence[M]//Computational Intelligence: A Dynamic System Perspective. New Jersey: Addison Wesley, 1993:137-151.
[28] Hauert S, Leven S, Varga M. Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, September 25-30, 2011.
[29] Cambone S. Unmanned Aircraft Systems Roadmap 2005—2030[R]. Office of the Secretary of Defense, 2005.
[30] Robert O. Small unmanned aircraft systems (SUAS) flight plan: 2016—2036[R]. United States Air Force, 2016.
[31] Vasarhelyi G, Viragh C, Somorjai G, et al. Outdoor flocking and formation flight with autonomous aerial robots[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, September 14-18, 2014.
[32] Virágh C, Vásárhelyi G, Tarcai N, et al. Flocking algorithm for autonomous flying robots[J]. Bioinspiration & Biomimetics, 2014, 9(2): 025012:1-025012:11.
[33] Yong E. Autonomous drones flock like birds[EB/OL]. (2016-04-05)[2016-11-25]. http://www.nature.com/news/autonomous-drones-flock-like-birds-1.14776.
[34] Chung T H, Clement M R, Day M A, et al. Live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs[C]. IEEE International Conference on Robotics and Automation. Stockholm, Sweden, May 16-21, 2016.
[35] Day M A, Clement M R, Russo J D, et al. Multi-UAV software systems and simulation architecture[C]. International Conference on Unmanned Aircraft Systems, Denver, Colorado, USA, June 9-12, 2015.
[36] Daniel P. Gremlins[EB/OL]. (2014-06-09)[2016-11-25]. http://www.darpa.mil/program/gremlins.
[37] Ledé J C. Collaborative operations in denied environment (CODE)[EB/OL]. (2015-01-21)[2016-11-25]. http://www.darpa.mil/program/collaborative-operations-in-denied-environment.
[38] DARPA Public Affairs. Operating in contested environments[EB/OL]. (2015-03-30)[2016-11-25]. http://www.darpa.mil/news-events/2015-03-30.
[39] Office of Naval Research. LOCUST: Autonomous, swarming UAVs fly into the future[EB/OL]. (2015-04-14) [2016-11-25]. http://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarm-ONR.aspx.
[40] DARPA Public Affairs. OFFSET envisions swarm capabilities for small urban ground units[EB/OL]. (2016-12-07) [2016-11-25]. http://www.darpa.mil/ news-events/2016-12-07.
[41] 范彦铭. 无人机的自主与智能控制[J]. 中国科学(技术科学), 2017, 47(3): 221-229. Fan Yanming. Autonomous and intelligent control of the unmanned aerial vehicle[J]. Science Sinica Technologica, 2017, 47(3): 221-229.
文章导航

/