专题论文

燃料电池关键材料与进展

  • 李存璞 ,
  • 陈嘉佳 ,
  • 李莉 ,
  • 魏子栋
展开
  • 重庆大学化学化工学院, 重庆 400044
李存璞,讲师,研究方向为阴离子交换膜设计与合成,电子信箱:lcp@cqu.edu.cn

收稿日期: 2017-03-14

  修回日期: 2017-04-13

  网络出版日期: 2017-05-08

基金资助

国家自然科学基金青年基金项目(21606027)

Key materials and progress of fuel cells

  • LI Cunpu ,
  • CHEN Jiajia ,
  • LI Li ,
  • WEI Zidong
Expand
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

Received date: 2017-03-14

  Revised date: 2017-04-13

  Online published: 2017-05-08

摘要

离子交换膜是燃料电池的重要部件,肩负着在电池内部传递离子,形成完整电池回路的作用。按照传导离子的种类,可以将其分为阳离子交换膜和阴离子交换膜,分别应用于质子交换膜燃料电池和碱性阴离子交换膜燃料电池中。本文阐述了这2 类电池的研究进展和应用,提出了存在的主要问题,并着重介绍了常见阴离子交换膜及其合成方法和降解机理,对研究前景提出展望。

本文引用格式

李存璞 , 陈嘉佳 , 李莉 , 魏子栋 . 燃料电池关键材料与进展[J]. 科技导报, 2017 , 35(8) : 19 -25 . DOI: 10.3981/j.issn.1000-7857.2017.08.002

Abstract

Ion exchange membranes are the most important parts of fuel cells. According to its conduction ion species, the ion exchange membrane (IEM)includes the cation exchange membrane (CEM) and the anion exchange membrane(AEM), which are used in the proton exchange membrane fuel cell (PEMFC) and the alkaline anion exchange membrane fuel cell (APEFC). This paper reviews the research and the application of these two types of batteries, focusing on the main problems of the common anion exchange membranes and its synthesis methods and the degradation mechanism. Finally, the developmental and research prospects are forecasted.

参考文献

[1] Valocchi M, Juliano J, Schurr A. Switching perspectives: Creating new business models for a changing world of energy[M]//Smart Grid Applications and Developments. London: Springer London, 2014: 165-182.
[2] Fri R W, Savitz M L. Rethinking energy innovation and social science[J]. Energy Research & Social Science, 2014, 1: 183-187.
[3] 隋智通, 隋升, 罗冬梅. 燃料电池及其应用[M]. 北京: 冶金工业出版社, 2004. Sui Zhitong, Sui Sheng, Luo Dongmei. Fuel cell and its applications[M]. Beijing: Metallurgical Industry Press, 2004.
[4] 陈哲艮. 氢能与燃料电池[J]. 科技产业, 2001(10): 19-21. Chen Zhegen. Fuel cells and hydrogen[J]. Technology Industry, 2001 (10): 19-21.
[5] 王亚琴, 张宏伟. 燃料电池用非氟质子交换膜研究现状[J]. 安徽建筑工业学院学报(自然科学版), 2006(3): 18-21. Wang Yaqin, Zhang Hongwei. Research status of non-fluorine proton exchange membrane for fuel cells[J]. Journal of Anhui Institute of Architecture (Natural Science), 2006(3): 18-21.
[6] 刘晓秋, 吕雪艳, 李胜海. 燃料电池用磺化聚酰亚胺质子交换膜材料的制备与性质[J]. 分子科学学报, 2009(3): 30-32. Liu Xiaoqiu, Lü Xueyan, Li Shenghai. The Preparation and properties of sulfonated polyimide proton exchange membrane for fuel cells[J]. Journal of Molecular Science, 2009(3): 30-32.
[7] 林才顺, 魏浩杰. 氢能利用与制氢储氢技术研究现状[J]. 节能与环保, 2010(2): 42-43. Lin Caishun, Wei Haojie. Research status of hydrogen energy utilization and hydrogen storage technology[J]. Energy Conservation and Environmental Protection, 2010, (2): 42-43.
[8] 王华文, 齐国祯. 燃料电池技术研究进展及产业化[J]. 高桥石化, 2005, 20(3): 46. Wang Huawen, Qi Guozhen. Research progress and industrialization of fuel cell technology[J]. Gao Qiao Petro-Chemical, 2005, 20(3): 46.
[9] 衣宝廉. 燃料电池——原理·技术·应用[M]. 北京: 化学工业出版社, 2003. Yi Baolian. Fuel cells:Principles, technologies and applications[M]. Beijing: Chemical Industry Press, 2003.
[10] Zhang Z, Xu T. Poly(ether ketone)s bearing pendent sulfonate groups via copolyacylation of a sulfonated monomer and isomeric AB-type comonomers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2013, 52(2): 200-207.
[11] Cui M, Zhang Z, Yuan T, et al. Proton-conducting membranes based on side-chain-type sulfonated poly(ether ketone/ether benzimidazole)s via, one-pot condensation[J]. Journal of Membrane Science, 2014, 465 (13): 100-106.
[12] And Z S, Holdcroft S. Synthesis and proton conductivity of partially sulfonated poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) block copolymers[J]. Macromolecules, 2005, 38(10): 4193-4201.
[13] Li N, Yan T, Li Z, et al. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes[J]. Energy & Environmental Science, 2012, 5(7): 7888-7892.
[14] Li G, Xie J, Cai H, et al. New highly proton-conducting membrane based on sulfonated poly(arylene ether sulfone)s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39 (6): 2639-2648.
[15] Guo X, Yuan S, Fang J. Synthesis and properties of novel sulfonated polyimides from 4, 4′-(biphenyl-4, 4′-diyldi (oxo)) bis (1, 8-naphthalic anhydride)[J]. Polymer, 2015, 59: 207-214.
[16] Lee W H, Kang H L, Dong W S, et al. Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2015, 282(5): 211-222.
[17] Li G, Zhao C, Cui Y, et al. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes with excellent mechanical properties and selectivity for direct methanol fuel cells[J]. Rsc Advances, 2016, 6(27): 23025-23032.
[18] Jukk K, Alexeyeva N, Ritslaid P, et al. Electrochemical reduction of oxygen on heat-treated pd nanoparticle/multi-walled carbon nanotube composites in alkaline solution[J]. Electrocatalysis, 2013, 4(1): 42-48.
[19] Liu Y, Xu C. Nanoporous PdTi alloys as non-platinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability[J]. ChemSusChem, 2013, 6(1): 78-84.
[20] 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318. Nie Yao, Ding Wei, Wei Zidong. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. Journal of Chemical Industry and Engineering, 2015, 66(9): 3305-3318.
[21] Ding W, Xia M R, Wei Z D, et al. Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction[J]. Chemical Communications, 2014, 50 (50): 6660-6663.
[22] Yao N, Wei D, Wei Z. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. Ciesc Journal, 2015.
[23] Yang Z, Ran J, Wu B, et al. Stability challenge in anion exchange membrane for fuel cells[J]. Current Opinion in Chemical Engineering, 2016, 12: 22-30.
[24] Chempath S, Einsla B R, Pratt L R, et al. Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes[J]. Journal of Physical Chemistry C, 2008, 112(9): 3179-3182.
[25] Lai A N, Wang L S, Lin C X, et al. Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells[J]. Journal of Membrane Science, 2015, 481: 9-18.
[26] Wang X, Li M, Golding B T, et al. A polytetrafluoroethylene-quaternary 1, 4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10022-10026.
[27] Hebeish A, Waly A, Abdel-Mohdy F A, et al. Synthesis and characterization of cellulose ion exchangers. I. Polymerization of glycidyl methacrylate, dimethylaminoethyl methacrylate, and acrylic acid with cotton cellulose using thiocarbonate-H2O2 redox system[J]. Journal of Applied Polymer Science, 1997, 66(6): 1029-1037.
[28] Disabb-Miller M L, Zha Y, DeCarlo A J, et al. Water uptake and ion mobility in cross-linked bis (terpyridine) ruthenium-based anion exchange membranes[J]. Macromolecules, 2013, 46(23): 9279-9287.
[29] Kwasny M T, Tew G N. Expanding metal cation options in polymeric anion exchange membranes[J]. Journal of Materials Chemistry A, 2017.
[30] Pan J, Lu S, Li Y, et al. High-performance alkaline polymer electrolyte for fuel cell applications[J]. Advanced Functional Materials, 2010, 20(2): 312-319.
[31] Xu T. Ion exchange membranes: state of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1): 1-29.
[32] Wu L, Xu T, Wu D, et al. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell[J]. Journal of Membrane Science, 2008, 310(1): 577-585..
[33] Yan X, Gu S, He G, et al. Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell[J]. Journal of Power Sources, 2014, 250: 90-97.
[34] Liu G, Shang Y, Xie X, et al. Synthesis and characterization of anion exchange membranes for alkaline direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37: 848-53.
[35] Wu L, Xu T, Wu D, et al. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell[J]. Journal of Membrane Science, 2008, 310(1): 577-585.
[36] Lin X, Liu Y, Poynton S D, et al. Cross-linked anion exchange membranes for alkaline fuel cells synthesized using a solvent free strategy[J]. Journal of Power Sources, 2013, 233: 259-268.
[37] 潘杰峰. 静电纺丝技术制备离子交换膜[D]. 合肥: 中国科学技术大学, 2015. Pan Jiefeng. The preparation of ion exchange membrane based on electrospinning[D]. Hefei: University of Science and Technology of China, 2015.
文章导航

/