专题论文

全固态锂电池研究进展

  • 任耀宇
展开
  • 马里兰大学能源研究中心, 美国马里兰州大学公园市 20740
任耀宇,博士,研究方向为固态锂电池和燃料电池技术研发,电子信箱:yroneal@gmail.com

收稿日期: 2017-03-08

  修回日期: 2017-03-30

  网络出版日期: 2017-05-08

Research progress on all-solid-state lithium batteries

  • REN Yaoyu
Expand
  • Energy Research Center, University of Maryland, College Park 20740, United States

Received date: 2017-03-08

  Revised date: 2017-03-30

  Online published: 2017-05-08

摘要

电动汽车、大规模储能和微型器件等领域的发展要求不断提高现有二次电池的能量密度、功率密度、工作温度范围和安全性。全固态锂电池作为最具潜力的电化学储能装置,近年来受到广泛关注。本文阐述了全固态锂电池的优点,即固态电解质的使用有助于提高锂电池安全性、能量密度和功率密度,拓宽电池工作温度范围和应用领域;指出了作为全固态电池关键材料的固态电解质应满足的要求,并在此基础上分别讨论了聚合物电解质和无机固态电解质(特别是硫化物和氧化物)的优缺点;介绍了固态锂电池的3 种结构类型,即薄膜型、3D 薄膜型和体型,综述了全固态锂电池从薄膜型向体型发展的历史进程及现状,并在此基础上讨论了全固态电池最终实现安全性、高能量密度和功率密度仍需解决的固态电解质材料方面问题。

本文引用格式

任耀宇 . 全固态锂电池研究进展[J]. 科技导报, 2017 , 35(8) : 26 -36 . DOI: 10.3981/j.issn.1000-7857.2017.08.003

Abstract

The development of automobile, large-scale energy storage, and micro devices requires the ever increasing energy and power density and the improvement of the safety and operation temperature range of the secondary battery. All-solid-state lithium batteries (ASSLBs) draw much attention recently as the most potential electrochemical energy storage device. In this review, the advantages of ASSLBs, i.e., the benefits of incorporating solid electrolytes on the improvement of the safety, energy and power density and expanding the operation temperature and application fields of lithium batteries, are summarized. The requirements for qualified solid electrolytes used as the key material in ASSLBs are also suggested, based on which the advantages and disadvantages of polymer electrolytes and inorganic solid electrolytes (especially sulfides and oxides) are discussed. The three configurations, i.e., thin film, 3D thin film, and bulk type, of ASSLBs are introduced. The history and present status of ASSLBs progressing from the thin film type to the bulk type are reviewed with the focus on the representative prototype batteries developed so far. The barriers associated with solid electrolyte materials that still hinder ASSLBs from achieving high safety, energy and power density are finally indicated.

参考文献

[1] Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[2] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[3] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[4] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[5] Fergus J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569.
[6] Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458.
[7] Mizuno F, Hayashi A, Tadanaga K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921.
[8] Seino Y, Ota T, Takada K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631.
[9] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
[10] Frechette V D, Kreidl N. Borate glasses: structure, properties, applications[M]. Plenum Publishing Corporation, 1978.
[11] Charles R J. Some structural and electrical properties of lithium silicate glasses[J]. Journal of the American Ceramic Society, 1963, 46(5): 235-238.
[12] Kuchler R, Kanert O, Rückstein S, et al. Correspondence between nuclear spin relaxation and ionic conduction in lithium germanate glasses[J]. Journal of Non-Crystalline Solids, 1991, 128(3): 328-332.
[13] Pradel A, Pagnier T, Ribes M. Effect of rapid quenching on electrical properties of lithium conductive glasses[J]. Solid State Ionics, 1985, 17 (2): 147-154.
[14] Charles R J. Metastable liquid immiscibility in alkali metal oxide-silica systems[J]. Journal of the American Ceramic Society, 1966, 49(2): 55-62.
[15] Tuller H L, Button D P, Uhlmann D R. Fast ion-transport in oxide glasses[J]. Journal of Non-Crystalline Solids, 1980, 40(1-3): 93-118.
[16] Magistris A, Chiodelli G, Villa M. Lithium borophosphate vitreous electrolytes[J]. Journal of Power Sources, 1985, 14(1/3): 87-91.
[17] Chowdari B V R, Radhakrishnan K. Ionic conductivity studies of the vitreous Li2O-P2O5-Ta2O5 system[J]. Journal of Non-Crystalline Solids, 1989, 108(3): 323-332.
[18] Kim C E, Hwang H C, Yoon M Y, et al. Fabrication of a high lithium ion conducting lithium borosilicate glass[J]. Journal of Non-Crystalline Solids, 2011, 357(15): 2863-2867.
[19] Bates J B, Dudney N J, Gruzalski G R, et al. Electrical properties of amorphous lithium electrolyte thin films[J]. Solid State Ionics, 1992, 53-56, Part 1: 647-654.
[20] Bates J B, Dudney N J, Gruzalski G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. Journal of Power Sources, 1993, 43(1-3): 103-110.
[21] Jackson B J H, Young D A. Ionic conduction in pure and doped single-crystalline lithium iodide[J]. Journal of Physics and Chemistry of Solids, 1969, 30(8): 1973-1976.
[22] Alpen U V, Rabenau A, Talat G H. Ionic conductivity in Li3N single crystals[J]. Applied Physics Letters, 1977, 30(12): 621-623.
[23] Hong H Y P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124.
[24] Bruce P G, West A R. Ionic conductivity of LISICON solid solutions, Li2+2xZn1-xGeO4[J]. Journal of Solid State Chemistry, 1982, 44(3): 354-365.
[25] Bruce P G, West A R. Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes[J]. Journal of Solid State Chemistry, 1984, 53(3): 430-434.
[26] Kuwano J, West A R. New Li+ ion conductors in the system, Li4GeO4-Li3VO4[J]. Materials Research Bulletin, 1980, 15(11): 1661-1667.
[27] Briant J L, Farrington G C. Ionic conductivity in lithium and lithiumsodium beta alumina[J]. Journal of the Electrochemical Society, 1981, 128(9): 1830-1834.
[28] Aono H, Sugimoto E, Sadaoka Y, et al. Ionic conductivity of solid electrolytes based on lithium titanium phosphate[J]. Journal of the Electrochemical Society, 1990, 137(4): 1023-1027.
[29] Inaguma Y, Chen L Q, Itoh M, et al. High ionic-conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689-693.
[30] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781.
[31] Li Y, Han J T, Wang C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357-15361.
[32] Fenton D E, Parker J M, Wright P V. Complexes of alkali-metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589.
[33] Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry, 1975, 5(1): 63-69.
[34] Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries[J]. European Polymer Journal, 2006, 42(1): 21-42.
[35] Meyer W H. Polymer electrolytes for lithium-ion batteries[J]. Advanced Materials, 1998, 10(6): 439-448.
[36] Marcinek M, Syzdek J, Marczewski M, et al. Electrolytes for Li-ion transport-review[J]. Solid State Ionics, 2015, 276(0): 107-126.
[37] Nan C W, Fan L, Lin Y, et al. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles[J]. Physical Review Letters, 2003, 91(26): 266104.
[38] Walls H J, Zhou J, Yerian J A, et al. Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry[J]. Journal of Power Sources, 2000, 89(2): 156-162.
[39] Dai Y, Wang Y, Greenbaum S G, et al. Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides[J]. Electrochimica Acta, 1998, 43 (10-11): 1557-1561.
[40] Tang C, Hackenberg K, Fu Q, et al. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers[J]. Nano Letters, 2012, 12(3): 1152-1156.
[41] Angulakshmi N, Kumar R S, Kulandainathan M A, et al. Composite polymer electrolytes encompassing metal organic frame works: a new strategy for all-solid-state lithium batteries[J]. The Journal of Physical Chemistry C, 2014, 118(42): 24240-24247.
[42] Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15 (4): 2740-2745.
[43] Villaluenga I, Wujcik K H, Tong W, et al. Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries[J]. Proceedings of the National Academy of Sciences, 2016, 113(1): 52-57.
[44] Fu K, Gong Y, Dai J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7094-7099.
[45] Zhang J, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
[46] Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energy Storage Materials, 2016, 5: 139-164.
[47] Fan L Z, Hu Y S, Bhattacharyya A J, et al. Succinonitrile as a versatile additive for polymer electrolytes[J]. Advanced Functional Materials, 2007, 17(15): 2800-2807.
[48] Zhang Z, Sherlock D, West R, et al. Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity[J]. Macromolecules, 2003, 36 (24): 9176-9180.
[49] Zhang H, Li C, Piszcz M, et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815.
[50] Wong D H C, Thelen J L, Fu Y, et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3327-3331.
[51] Liu S, Imanishi N, Zhang T, et al. Lithium dendrite formation in Li/poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells[J]. Journal of The Electrochemical Society, 2010, 157(10): A1092-A1098.
[52] Rea J R, Foster D L, Mallory P R, et al. High ionic conductivity in densified polycrystalline lithium nitride[J]. Materials Research Bulletin, 1979, 14(6): 841-846.
[53] Whittingham M S, Huggins R A. Beta-Alumina-Prelude to a revolution in solid state electrochemistry[M]//Roth R S, JR. S J S. The 5th Materials Research Symposium on "Solid State Chemistry". National Bureau of Standards, Gaithersburg, Maryland; National Bureau of Standards Special Publication. 1972: 139-154.
[54] Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2P5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742-A746.
[55] Bron P, Johansson S, Zick K, et al. Li10SnP2S12: an affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697.
[56] Kuhn A, Gerbig O, Zhu C, et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14669-14674.
[57] Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030.
[58] Nagao M, Hayashi A, Tatsumisago M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solidstate cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18600-18606.
[59] Marchand R. Nitrogen-containing phosphate glasses[J]. Journal of Non-Crystalline Solids, 1983, 56(1-3): 173-178.
[60] Larson R W, Day D E. Preparation and characterization of lithium phosphorus oxynitride glass[J]. Journal of Non-Crystalline Solids, 1986, 88(1): 97-113.
[61] Yu X H, Bates J B, Jellison G E, et al. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride[J]. Journal of the Electrochemical Society, 1997, 144(2): 524-532.
[62] Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727.
[63] Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates: A review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990.
[64] Anantharamulu N, Rao K K, Rambabu G, et al. A wide-ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46(9): 2821-2837.
[65] Ren Y, Deng H, Chen R, et al. Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics[J]. Journal of the European Ceramic Society, 2015, 35(2): 561-572.
[66] Bernuy L C, Manalastas W, Lopez del Amo J M, et al. Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics[J]. Chemistry of Materials, 2014, 26(12): 3610-3617.
[67] Ni J E, Case E D, Sakamoto J S, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. Journal of Materials Science, 2012, 47(23): 7978-7985.
[68] Ren Y, Chen K, Chen R, et al. Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society, 2015, 98(12): 3603-3623.
[69] Palacin M R. Recent advances in rechargeable battery materials: A chemist's perspective[J]. Chemical Society Reviews, 2009, 38(9): 2565-2575.
[70] Patil A, Patil V, Wook Shin D, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8-9): 1913-1942.
[71] Oudenhoven J F M, Baggetto L, Notten P H L. All-solid-state lithium-ion microbatteries: A review of various three-dimensional concepts[J]. Advanced Energy Materials, 2011, 1(1): 10-33.
[72] Liang C C, Bro P. A high-voltage, solid-state battery system: I . design considerations[J]. Journal of the Electrochemical Society, 1969, 116(9): 1322-1323.
[73] Liang C C, Epstein J, Boyle G H. A high-voltage, solid-state battery system: II . fabrication of thin-film cells[J]. Journal of the Electrochemical Society, 1969, 116(10): 1452-1454.
[74] Owens B B. Solid state electrolytes: overview of materials and applications during the last third of the Twentieth Century[J]. Journal of Power Sources, 2000, 90(1): 2-8.
[75] Kanehori K, Matsumoto K, Miyauchi K, et al. Thin film solid electrolyte and its application to secondary lithium cell[J]. Solid State Ionics, 1983, 9-10, Part 2: 1445-1448.
[76] Ohtsuka H, Okada S, Yamaki J-i. Solid state battery with Li2O-V2O5-SiO2 solid electrolyte thin film[J]. Solid State Ionics, 1990, 40-41, Part 2: 964-966.
[77] Akridge J R, Vourlis H. Solid state batteries using vitreous solid electrolytes[J]. Solid State Ionics, 1986, 18-19, Part 2(0): 1082-1087.
[78] Bates J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics, 2000, 135(1/4): 33-45.
[79] Wang B, Bates J B, Hart F X, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes[J]. Journal of the Electrochemical Society, 1996, 143(10): 3203-3213.
[80] Tarascon J M, Gozdz A S, Schmutz C, et al. Performance of Bellcore's plastic rechargeable Li-ion batteries[J]. Solid State Ionics, 1996, 86-88, Part 1: 49-54.
[81] Lago N, Garcia-Calvo O, Lopez del Amo J M, et al. All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes[J]. Chemsuschem, 2015, 8(18): 3039-3043.
[82] Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386.
[83] Zhang J, Zhao J, Yue L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24): 1501082.
[84] Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 2013, 4: 1543.
[85] Tatsumisago M, Hayashi A. Sulfide glass-ceramic electrolytes for allsolid-state lithium and sodium batteries[J]. International Journal of Applied Glass Science, 2014, 5(3): 226-235.
[86] Hayashi A, Tatsumisago M. Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glassceramic electrolytes[J]. Electronic Materials Letters, 2012, 8(2): 199-207.
[87] Tatsumisago M, Nagao M, Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries[J]. Journal of Asian Ceramic Societies, 2013, 1(1): 17-25.
[88] Nagata H, Chikusa Y. A lithium sulfur battery with high power density[J]. Journal of Power Sources, 2014, 264: 206-210.
[89] Ren Y, Liu T, Shen Y, et al. Chemical compatibility between garnetlike solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials[J]. Journal of Materiomics, 2016, 2 (3): 256-264.
[90] Kim K H, Iriyama Y, Yamamoto K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767.
[91] Birke P, Salam F, Döring S, et al. A first approach to a monolithic all solid state inorganic lithium battery[J]. Solid State Ionics, 1999, 118 (1-2): 149-157.
[92] Kobayashi E, Plashnitsa L S, Doi T, et al. Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes[J]. Electrochemistry Communications, 2010, 12(7): 894-896.
[93] Aboulaich A, Bouchet R, Delaizir G, et al. A new approach to develop safe all-inorganic monolithic Li-ion batteries[J]. Advanced Energy Materials, 2011, 1(2): 179-183.
[94] Delaizir G, Viallet V, Aboulaich A, et al. The Stone Age revisited: building a monolithic inorganic lithium-ion battery[J]. Advanced Functional Materials, 2012, 22(10): 2140-2147.
[95] Kanamura K, Akutagawa N, Dokko K. Three dimensionally ordered composite solid materials for all solid-state rechargeable lithium batteries[J]. Journal of Power Sources, 2005, 146(1-2): 86-89.
[96] Hara M, Nakano H, Dokko K, et al. Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4[J]. Journal of Power Sources, 2009, 189(1): 485-489.
[97] Kotobuki M, Suzuki Y, Munakata H, et al. Fabrication of three-dimensional battery using ceramic electrolyte with honeycomb structure by sol-gel process[J]. Journal of The Electrochemical Society, 2010, 157 (4): A493-A498.
[98] Kotobuki M, Munakata H, Kanamura K, et al. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode[J]. Journal of The Electrochemical Society, 2010, 157(10): A1076-A1079.
[99] Ohta S, Komagata S, Seki J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources, 2013, 238: 53-56.
[100] Ohta S, Seki J, Yagi Y, et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. Journal of Power Sources, 2014, 265: 40-44.
[101] Baek S W, Lee J M, Kim T Y, et al. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries[J]. Journal of Power Sources, 2014, 249: 197-206.
[102] Liu T, Ren Y, Shen Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. Journal of Power Sources, 2016, 324: 349-357.
[103] Kumar B, Kumar J, Leese R, et al. A solid-state, rechargeable, long cycle life lithium-air battery[J]. Journal of the Electrochemical Society, 2010, 157(1): A50.
[104] Kichambare P, Kumar J, Rodrigues S, et al. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries[J]. Journal of Power Sources, 2011, 196(6): 3310-3316.
[105] Wang Y, Zhou H. To draw an air electrode of a Li-air battery by pencil[J]. Energy & Environmental Science, 2011, 4(5): 1704.
[106] Kichambare P, Rodrigues S, Kumar J. Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(1): 49-52.
[107] Kitaura H, Zhou H. Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode[J]. Energy & Environmental Science, 2012, 5(10): 9077-9084.
[108] Kitaura H, Zhou H. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode[J]. Advanced Energy Materials, 2012, 2(7): 889-894.
[109] Aleshin G Y, Semenenko D A, Belova A I, et al. Protected anodes for lithium-air batteries[J]. Solid State Ionics, 2011, 184(1): 62-64.
[110] Hardwick L J, Bruce P G. The pursuit of rechargeable non-aqueous lithium-oxygen battery cathodes[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 178-185.
[111] Hassoun J, Croce F, Armand M, et al. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell[J]. Angewandte Chemie International Edition, 2011, 50(13): 2999-3002.
[112] Suzuki Y, Kami K, Watanabe K, et al. Characteristics of discharge products in all-solid-state Li-air batteries[J]. Solid State Ionics, 2015, 278: 222-227.
[113] Jung Y S, Oh D Y, Nam Y J, et al. Issues and challenges for bulktype all-solid-state rechargeable lithium batteries using sulfide solid electrolytes[J]. Israel Journal of Chemistry, 2015, 55(5): 472-485.
[114] Shin B R, Nam Y J, Oh D Y, et al. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. Electrochimica Acta, 2014, 146: 395-402.
[115] Sahu G, Lin Z, Li J, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy & Environmental Science, 2014, 7(3): 1053-1058.
[116] Ohta N, Takada K, Sakaguchi I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications, 2007, 9(7): 1486-1490.
[117] Oh G, Hirayama M, Kwon O, et al. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte[J]. Chemistry of Materials, 2016, 28(8): 2634-2640.
[118] Ren Y, Shen Y, Lin Y, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[119] Rosso M, Gobron T, Brissot C, et al. Onset of dendritic growth in lithium/polymer cells[J]. Journal of Power Sources, 2001, 97-98: 804-806.
[120] Chazalviel J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42(12): 7355-7367.
[121] Brissot C, Rosso M, Chazalviel J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. Journal of Power Sources, 1999, 81-82: 925-929.
[122] Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396-A404.
[123] Cheng E J, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91.
[124] Muramatsu H, Hayashi A, Ohtomo T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1): 116-119.
[125] Ohtomo T, Hayashi A, Tatsumisago M, et al. Glass electrolytes with high ion conductivity and high chemical stability in the system LiI-Li2O-Li2S-P2S5[J].Electrochemistry, 2013, 81(6): 428-431.
[126] Ohtomo T, Hayashi A, Tatsumisago M, et al. Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives[J]. Journal of Materials Science, 2013, 48(11): 4137-4142.
文章导航

/