[1] Holladay J D, Hu J, King D L, et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009, 139(4): 244-260.
[2] Wang Z, Roberts R R, Naterer G F, et al. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16287-16301.
[3] Alves H J, Junior C B, Niklevicz R R, et al. Overview of hydrogen production technologies from biogas and the applications in fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(13): 5215-5225.
[4] O'Brien J E, Stoots C M, Herring J S, et al. Performance measurements of solid-oxide electrolysis cells for hydrogen production from nuclear energy[C]//12th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2004: 523-532.
[5] Fujiwara S, Kasai S, Yamauchi H, et al. Hydrogen production by high temperature electrolysis with nuclear reactor[J]. Progress in Nuclear Energy, 2008, 50(2): 422-426.
[6] Bidrawn F, Kim G, Corre G, et al. Efficient reduction of CO2 in a solid oxide electrolyzer[J]. Electrochemical and Solid-State Letters, 2008, 11 (9): B167-B170.
[7] Ge B, Ma J T, Ai D S, et al. Sr2FeNbO6 applied in solid oxide electrolysis cell as the hydrogen electrode: Kinetic studies by comparison with Ni-YSZ[J]. Electrochimica Acta, 2015, 151: 437-446.
[8] Ni M, Leung M K H, Leung D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2337-2354.
[9] Akins J E. The oil crisis: This time the wolf is here[J]. Foreign Affairs, 1973, 51(3): 462-490.
[10] Hartgen D T, Neveu A J. The 1979 energy crisis: Who conserved how much?[J]. Transportation Research Board Special Report, 1980 (191).
[11] Kohl W L. After the second oil crisis: Energy policies in Europe, America, and Japan[M]. Lexington: Heath and Company, 1982.
[12] Bockris J O M. A hydrogen economy[J]. Science, 1972, 176(4041): 1323-1323.
[13] Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: A sustainable development scenario[J]. International Journal of Hydrogen Energy, 2003, 28(3): 267-284.
[14] Reay D A. Summary of international energy research and development activities 1974-1976: Prepared by the Smithsonian Science Information Exchange Inc[M]. Oxford Pergamon Press, 1979.
[15] Doenitz W, Schmidberger R, Steinheil E, et al. Hydrogen production by high temperature electrolysis of water vapour[J]. International Journal of Hydrogen Energy, 1980, 5(1): 55-63.
[16] Doenitz W, Schmidberger R. Concepts and design for scaling up high temperature water vapour electrolysis[J]. International Journal of Hydrogen Energy, 1982, 7(4): 321-330.
[17] Doenitz W, Erdle E, Schamm S, et al. Recent advances in the development of high-temperature electrolysis technology in Germany[C]//Proceedings of the Seventh World Hydrogen Energy Conference. Moscow: 1988: 65-73.
[18] Blomen L J M J, Mugerwa M N, et al. Fuel cell systems[M]. Dordrecht: Springer Science & Business Media, 2013: 31.
[19] Zahid M. Final report summary-HI2H2 (Highly efficient, high temperature, hydrogen production by water electrolysis) [EB/OL]. [2017-03-14]. http://cordis.europa.eu/result/rcn/47795_en.html.
[20] Hi2H2. Highly efficient, high temperature, hydrogen production by water electrolysis [EB/OL]. [2017-03-14]. http://www.hi2h2.com/.
[21] Relhy. Innovative solid oxide electrolyser stacks for efficient and reliable hydrogen production[EB/OL]. [2017-03-14]. http://www.relhy.eu.
[22] Ebbesen S D, Høgh J, Nielsen K A, et al. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7363-7373.
[23] RelHy. Final Report-RELHY (Innovative solid oxide electrolyser stacks for efficient and reliable hydrogen production) [EB/OL]. [2017-03-14]. http://cordis.europa.eu/publication/rcn/15767_en.html.
[24] FORTH/ICEHT. Development of new electrode materials and understanding of degradation mechanisms on Solid Oxide High Temperature Electrolysis Cells [EB/OL]. [2017-03-14]. http://selysos.iceht.forth.gr/index.php.
[25] DTU. Efficient Co-electrolyser for efficient renewable energy storage[EB/OL]. [2017-03-14]. http://www.eco-soec-project.eu/.
[26] GrlnHy. Green industrial hydrogen via reversible high-temperature electrolysis [EB/OL]. [2017-03-14]. http://www.green-industrial-hydrogen.com/home/.
[27] Jülich. Solid oxide fuel cells (SOFCs) [EB/OL]. [2017-03-14]. http://www.fz-juelich.de/portal/EN/Research/EnergyEnvironment/Fuelcells/SO FC/_node.html.
[28] Hauch A, Brodersen K, Chen M, et al. Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability[J]. Solid State Ionics, 2016, 293: 27-36.
[29] Hauch A, Brodersen K, Chen M, et al. A decade of improvements for solid oxide electrolysis cells. Long-term degradation rate from 40%/Kh to 0.4%/Kh[C]//Meeting Abstracts. The Electrochemical Society, 2016, 39: 2861-2861.
[30] Hauch A, Brodersen K, Chen M, et al. A decade of solid oxide electrolysis improvements at DTU energy[J]. ECS Transactions, 2017, 75 (42): 3-14.
[31] Moçoteguy P, Brisse A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2013, 38(36): 15887-15902.
[32] Schefold J, Brisse A, Poepke H. 23,000 h steam electrolysis with an electrolyte supported solid oxide cell[J]. International Journal of Hydrogen Energy, 2017: 1-12.
[33] Nguyen V N, Fang Q, Packbier U, et al. Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4281-4290.
[34] IAHE. Establishment of IAHE and Quarter Century of Hydrogen Movement: Quarter century of hydrogen movement 1974-2000 [EB/OL].[2017-03-14]. http://www.iahe.org/history.asp.
[35] EMAZE. Energy-sources[EB/OL]. [2017-03-14]. https://www.emaze. com/@AZRLRIRO/Energy-sources.
[36] Maskalick N J. Evaluation of high-temperature solid oxide cell technology for hydrogen-production[J]. Journal of the Electrochemical Society, 1983, 130(8): C312.
[37] Maskalick N J. High temperature electrolysis cell performance characterization[J]. International Journal of Hydrogen Energy, 1986, 11(9): 563-570.
[38] Varljen T C, Chi J W H, Karbowski J S, et al. Preconceptuai design of hyfire[C]. Fusion Reactor Design and Technology: Proceedings of the Third Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology, Organized by the International Atomic Energy Agency and Held in Tokyo, Japan, October, 5-16, 1981.
[39] National Hydrogen Energy Roadmap Workshop. National hydrogen energy roadmap[EB/OL]. [2017-03-14]. http://www.hydrosteed.com/images/PDF9.pdf.
[40] Milliken J. Hydrogen, Fuel cells and infrastructure technologies program: multiyear research, development and demonstration plan[R]. National Renewable Energy Laboratory (NREL), Golden, CO, 2007.
[41] Hino R, Yan X L. Nuclear hydrogen production handbook[M]. Boca Raton, Boca Raton CRC Press, 2011.
[42] Sohal M S, O'Brien J E, Stoots C M, et al. Critical causes of degradation in integrated laboratory scale cells during high-temperature electrolysis[J]. Idaho National Laboratory internal technical report INL/EXT-09-16004, 2009.
[43] Zhang X Y, O' Brien J E, O' Brien R C, et al. Improved durability of SOEC stacks for high temperature electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(1): 20-28.
[44] Zhang X Y, O' Brien J E, Tao G, et al. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment[J]. Journal of Power Sources, 2015, 297: 90-97.
[45] MSRI. Hydrogen production electrolyzer technology[EB/OL]. [2017-03-14]. http://www.msrihome.com/technology/hydrogen-production.p hp.
[46] Ceramatec. Technology [EB/OL]. [2017-03-14]. http://www.ceramatec. com/technology/.
[47] Sharma V I, Yildiz B. Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode[J]. Journal of the Electrochemical Society, 2010, 157(3): B441-B448.
[48] Mawdsley J R, David Carter J, Jeremy Kropf A, et al. Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks[J]. International Journal of Hydrogen Energy, 2009, 34(9): 4198-4207.
[49] Hino R, Haga K, Aita H, et al. 38. R&D on hydrogen production by high-temperature electrolysis of steam[J]. Nuclear Engineering and Design, 2004, 233(1): 363-375.
[50] Terada A, Iwatsuki J, Ishikura S, et al. Development of hydrogen production technology by thermochemical water splitting IS process pilot test plan[J]. Journal of Nuclear Science and Technology, 2007, 44(3): 477-482.
[51] Fujiwara S, Kasai S, Yamauchi H, et al. Hydrogen production by high temperature electrolysis with nuclear reactor[J]. Progress in Nuclear Energy, 2008, 50(2): 422-426.
[52] Yang C H, Jin C, Chen F L. Performances of micro-tubular solid oxide cell with novel asymmetric porous hydrogen electrode[J]. Electrochimica Acta, 2010, 56(1): 80-84.
[53] Liu Q, Yang C H, Dong X H, et al. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35: 10039-10044.
[54] Gopalan S, Mosleh M, Hartvigsen J J, et al. Analysis of self-sustaining recuperative solid oxide electrolysis systems[J]. Journal of Power Sources, 2008, 185(2): 1328-1333.
[55] Eguchi K, Hatagishi T, Arai H. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia-or ceriabased electrolyte[J]. Solid State Ionics, 1996, 86: 1245-1249.
[56] Kim J, Ji H I, Dasari H P, et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1225-1235.
[57] Yoo J, Woo S K, Yu J H, et al. La0.8Sr0.2MnO3 and Mn1.5Co1.5O4 double layer coated by electrophoretic deposition on Crofer22 APU for SOEC interconnect applications[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1542-1547.
[58] Koh J H, Yoon D J, Oh C H. Simple electrolyzer model development for high-temperature electrolysis system analysis using solid oxide electrolysis cell[J]. Journal of Nuclear Science and Technology, 2010, 47(7): 599-607.
[59] 中国氢能源网. 2012中国燃料电池和氢能报告[EB/OL]. 2012-03-29 [2017-03-14]. http://www.china-hydrogen.org/hydrogen/mix/2012-03-29/1512.html. China-hydrogen.org. Report on China's fuel cell and hydrogen energy 2012 [EB/OL]. 2012-03-29 [2017-03-14]. http://www.china-hydrogen.org/hydrogen/mix/2012-03-29/1512.html.
[60] 国务院办公厅. 能源发展战略行动计划(2014—2020年)(摘录)[J]. 上海节能, 2014(12): 1-2. General Office of the State Council of the People's Republic of China. Energy development strategic action plan (2014—2020) (Excerpt) [J]. Shanghai Energy Conservation, 2014(12): 1-2.
[61] Yu B, Zhang W Q, Xu J M, et al. Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2829-2835.
[62] Yu B, Zhang W Q, Chen J, et al. Advance in highly efficient hydrogen production by high temperature steam electrolysis[J]. Science China Chemistry, 2008, 51(4): 289-304.
[63] 赵晨欢, 张文强, 于波, 等. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288. Zhao Chenhuan, Zhang Wenqiang, Yu Bo, et al. Solid oxide electrolyzer cells[J]. Progress in Chemistry, 2016, 28(8): 1265-1288.
[64] 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5): 778-786. Zhang Wenqiang, Yu Bo, Chen Jing, et al. Hydrogen production through solid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry, 2008, 20(5): 778-786.
[65] 马景陶, 林旭平, 葛奔, 等. SOEC电解质与氢电极的流延制备、共烧结及性能[J]. 稀有金属材料与工程, 2009(增刊1): 700-703. Ma Jingtao, Lin Xuping, Ge Ben, et al. Preparation and co-sintering of electrolyte and hydrogen electrode via tape casting and its performance for SOEC[J]. Rare Metal Materials and Engineering, 2009, (Suppl 1): 700-703.
[66] 汪峰, 缪馥星, 官万兵. 不同还原条件下制备的固体氧化物燃料电池支撑阳极Ni-YSZ的性能[J]. 硅酸盐学报, 2015, 43(5): 650-656. Wang Feng, Miaow Fuxing, Guan Wanbing. Properties of supportedanode Ni-YSZ for planar solid oxide fuel cell prepared by different reduction processes [J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 650-656.
[67] 官万兵. 宁波材料所SOFC电堆模块研发取得全面提升[J]. 硅酸盐通报, 2013(6): 1140-1140. Guan Wanbing. R&D of SOFC stack in Institute of Materials Technology (Ning Po) have obtained a comprehensive promotion [J]. Bulletin of the Chinese Ceramic Society, 2013(6): 1140-1140.
[68] 宁波材料所固体氧化物燃料电池单堆运行功率达到2 kW[J]. 功能材料信息, 2013(增刊1): 90-90. Anon. The operation power of single stack of SOFC in Institute of Materials Technology (Ning Po) has reached 2 kW[J]. Functional Materials Information, 2013(Suppl 1): 90-90.
[69] 宁波材料技术与工程研究所. 宁波材料所SOEC高温电解水制氢取得重要进展[EB/OL]. [2011-04-11]. http://www.cas.cn/ky/kyjz/201104/t20110411_3110473.shtml. Institute of Materials Technology (Ning Po). Hydrogen production through SOEC high temperature electrolysis in Institute of Materials Technology (Ningpo) has made a significant progress [EB/OL]. [2011-04-11]. http://www.cas.cn/ky/kyjz/201104/t20110411_3110473.shtml.
[70] 匡佳雯, 史翊翔, 蔡宁生, 等. 固体氧化物电解池H2O-CO2共电解制取烃类燃料反应特性研究[J]. 中国电机工程学报, 2012, 32(17): 31-35. Kuang Jiawen, Shi Yuxiang, Cai Ningsheng, et al. Reaction characteristics of hydrocarbon production by H2O-CO2 co-electrolysis in solid oxide electrolysis cells[J]. Proceedings of the CSEE, 2012, 32(17): 31-35.
[71] 王振, 于波, 张文强, 等. 高温共电解HO/CO制备清洁燃料[J]. 化学进展, 2013, 25(7): 1229-1236. Wang Zhen, Yu Bo, Zhang Wenqiang, et al. Clean fuel production through high temperature co-electrolysis of H2O and CO2[J]. Progress in Chemistry, 2013, 25(7): 1229-1236.
[72] 范慧, 宋世栋, 韩敏芳. 固体氧化物电解池共电解H2O/CO2研究进展[J]. 中国工程科学, 2013, 15(2): 107-112. Fan Hui, Song Shidong, Han Minfang. Development of H2O/CO2 coelectrolysis in solid oxide electrolysis cell[J]. Engineering Science, 2013, 15(2): 107-112.
[73] Li W Y, Wang H J, Shi Y X, et al. Performance and methane production characteristics of H2O-CO2 co-electrolysis in solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11104-11109.
[74] Chen L, Chen F L, Xia C R. Direct synthesis of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells[J]. Energy & Environmental Science, 2014, 7(12): 4018-4022.
[75] Shi Y X, Luo Y, Cai N S, et al. Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells[J]. Electrochimica Acta, 2013, 88: 644-653.
[76] Xing R M, Wang Y R, Zhu Y Q, et al. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ-Cu ceramic composite electrode[J]. Journal of Power Sources, 2015, 274: 260-264.
[77] Yang Z B, Jin C, Yang C H, et al. Ba0.9Co0.5Fe0.4Nb0.1O3-δ as novel oxygen electrode for solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11572-11577.
[78] Wang Y Q, Yang Z B, Han M F, et al. Optimization of Sm0.5Sr0.5CoO3-δ-infiltrated YSZ electrodes for solid oxide fuel cell/electrolysis cell[J]. RSC Advances, 2016, 6(113): 112253-112259.
[79] DOE. DOE Technical Targets for Hydrogen Production from Electrolysis [EB/OL]. [2017-03-14]. https://energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis.