专题论文

固体氧化物电解池技术应用研究进展

  • 葛奔 ,
  • 艾德生 ,
  • 林旭平 ,
  • 杨志宾
展开
  • 1. 中国矿业大学(北京)机电与信息工程学院, 北京 100083;
    2. 清华大学核能与新能源技术研究院先进核能技术协同创新中心, 北京 100084;
    3. 中国矿业大学(北京)化学与环境工程学院, 北京 100083
葛奔,讲师,研究方向为新能源材料,电子信箱:geben@cumtb.edu.cn

收稿日期: 2017-01-15

  修回日期: 2017-03-23

  网络出版日期: 2017-05-08

基金资助

国家自然科学基金项目(51502153);中央高校基本科研业务费专项资金项目(2017QJ03);国家科技重大专项(2010ZX06901-020)

Progress on application of solid oxide electrolysis cells

  • GE Ben ,
  • AI Desheng ,
  • LIN Xuping ,
  • YANG Zhibin
Expand
  • 1. School of Mechanical Electronic & Information Engineering, China University of Mining and Technology, Beijing 100083, China;
    2. Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    3. School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing 100083, China

Received date: 2017-01-15

  Revised date: 2017-03-23

  Online published: 2017-05-08

摘要

固体氧化物电解池(SOEC)是固体氧化物燃料电池(SOFC)的逆运行装置。利用SOEC高温电解水制氢具有高效节能的优点,是目前新能源技术领域的研究热点之一。总体上看,国内SOEC 技术应用研究水平相较国外仍然有很大差距。本文综述了SOEC 的基本原理以及国内外应用研究的历程及发展现状。

本文引用格式

葛奔 , 艾德生 , 林旭平 , 杨志宾 . 固体氧化物电解池技术应用研究进展[J]. 科技导报, 2017 , 35(8) : 37 -46 . DOI: 10.3981/j.issn.1000-7857.2017.08.004

Abstract

A solid oxide electrolysis cell (SOEC) can be viewed as a solid oxide fuel cell (SOFC) that runs in a reverse mode. The high temperature steam electrolysis using the SOEC, with advantages of high efficiency and energy saving and as one method of hydrogen production, is a focal point of researches in the new energy technology domain. This paper reviews the principles of the SOEC and its applications both at home and abroad. Overall, compared with foreign countries, there is still a large gap in applications of the SOEC at present in our country. This review aims to attract research interests in China and to promote cooperation and application of the SOEC technology.

参考文献

[1] Holladay J D, Hu J, King D L, et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009, 139(4): 244-260.
[2] Wang Z, Roberts R R, Naterer G F, et al. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16287-16301.
[3] Alves H J, Junior C B, Niklevicz R R, et al. Overview of hydrogen production technologies from biogas and the applications in fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(13): 5215-5225.
[4] O'Brien J E, Stoots C M, Herring J S, et al. Performance measurements of solid-oxide electrolysis cells for hydrogen production from nuclear energy[C]//12th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2004: 523-532.
[5] Fujiwara S, Kasai S, Yamauchi H, et al. Hydrogen production by high temperature electrolysis with nuclear reactor[J]. Progress in Nuclear Energy, 2008, 50(2): 422-426.
[6] Bidrawn F, Kim G, Corre G, et al. Efficient reduction of CO2 in a solid oxide electrolyzer[J]. Electrochemical and Solid-State Letters, 2008, 11 (9): B167-B170.
[7] Ge B, Ma J T, Ai D S, et al. Sr2FeNbO6 applied in solid oxide electrolysis cell as the hydrogen electrode: Kinetic studies by comparison with Ni-YSZ[J]. Electrochimica Acta, 2015, 151: 437-446.
[8] Ni M, Leung M K H, Leung D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2337-2354.
[9] Akins J E. The oil crisis: This time the wolf is here[J]. Foreign Affairs, 1973, 51(3): 462-490.
[10] Hartgen D T, Neveu A J. The 1979 energy crisis: Who conserved how much?[J]. Transportation Research Board Special Report, 1980 (191).
[11] Kohl W L. After the second oil crisis: Energy policies in Europe, America, and Japan[M]. Lexington: Heath and Company, 1982.
[12] Bockris J O M. A hydrogen economy[J]. Science, 1972, 176(4041): 1323-1323.
[13] Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: A sustainable development scenario[J]. International Journal of Hydrogen Energy, 2003, 28(3): 267-284.
[14] Reay D A. Summary of international energy research and development activities 1974-1976: Prepared by the Smithsonian Science Information Exchange Inc[M]. Oxford Pergamon Press, 1979.
[15] Doenitz W, Schmidberger R, Steinheil E, et al. Hydrogen production by high temperature electrolysis of water vapour[J]. International Journal of Hydrogen Energy, 1980, 5(1): 55-63.
[16] Doenitz W, Schmidberger R. Concepts and design for scaling up high temperature water vapour electrolysis[J]. International Journal of Hydrogen Energy, 1982, 7(4): 321-330.
[17] Doenitz W, Erdle E, Schamm S, et al. Recent advances in the development of high-temperature electrolysis technology in Germany[C]//Proceedings of the Seventh World Hydrogen Energy Conference. Moscow: 1988: 65-73.
[18] Blomen L J M J, Mugerwa M N, et al. Fuel cell systems[M]. Dordrecht: Springer Science & Business Media, 2013: 31.
[19] Zahid M. Final report summary-HI2H2 (Highly efficient, high temperature, hydrogen production by water electrolysis) [EB/OL]. [2017-03-14]. http://cordis.europa.eu/result/rcn/47795_en.html.
[20] Hi2H2. Highly efficient, high temperature, hydrogen production by water electrolysis [EB/OL]. [2017-03-14]. http://www.hi2h2.com/.
[21] Relhy. Innovative solid oxide electrolyser stacks for efficient and reliable hydrogen production[EB/OL]. [2017-03-14]. http://www.relhy.eu.
[22] Ebbesen S D, Høgh J, Nielsen K A, et al. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7363-7373.
[23] RelHy. Final Report-RELHY (Innovative solid oxide electrolyser stacks for efficient and reliable hydrogen production) [EB/OL]. [2017-03-14]. http://cordis.europa.eu/publication/rcn/15767_en.html.
[24] FORTH/ICEHT. Development of new electrode materials and understanding of degradation mechanisms on Solid Oxide High Temperature Electrolysis Cells [EB/OL]. [2017-03-14]. http://selysos.iceht.forth.gr/index.php.
[25] DTU. Efficient Co-electrolyser for efficient renewable energy storage[EB/OL]. [2017-03-14]. http://www.eco-soec-project.eu/.
[26] GrlnHy. Green industrial hydrogen via reversible high-temperature electrolysis [EB/OL]. [2017-03-14]. http://www.green-industrial-hydrogen.com/home/.
[27] Jülich. Solid oxide fuel cells (SOFCs) [EB/OL]. [2017-03-14]. http://www.fz-juelich.de/portal/EN/Research/EnergyEnvironment/Fuelcells/SO FC/_node.html.
[28] Hauch A, Brodersen K, Chen M, et al. Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability[J]. Solid State Ionics, 2016, 293: 27-36.
[29] Hauch A, Brodersen K, Chen M, et al. A decade of improvements for solid oxide electrolysis cells. Long-term degradation rate from 40%/Kh to 0.4%/Kh[C]//Meeting Abstracts. The Electrochemical Society, 2016, 39: 2861-2861.
[30] Hauch A, Brodersen K, Chen M, et al. A decade of solid oxide electrolysis improvements at DTU energy[J]. ECS Transactions, 2017, 75 (42): 3-14.
[31] Moçoteguy P, Brisse A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2013, 38(36): 15887-15902.
[32] Schefold J, Brisse A, Poepke H. 23,000 h steam electrolysis with an electrolyte supported solid oxide cell[J]. International Journal of Hydrogen Energy, 2017: 1-12.
[33] Nguyen V N, Fang Q, Packbier U, et al. Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4281-4290.
[34] IAHE. Establishment of IAHE and Quarter Century of Hydrogen Movement: Quarter century of hydrogen movement 1974-2000 [EB/OL].[2017-03-14]. http://www.iahe.org/history.asp.
[35] EMAZE. Energy-sources[EB/OL]. [2017-03-14]. https://www.emaze. com/@AZRLRIRO/Energy-sources.
[36] Maskalick N J. Evaluation of high-temperature solid oxide cell technology for hydrogen-production[J]. Journal of the Electrochemical Society, 1983, 130(8): C312.
[37] Maskalick N J. High temperature electrolysis cell performance characterization[J]. International Journal of Hydrogen Energy, 1986, 11(9): 563-570.
[38] Varljen T C, Chi J W H, Karbowski J S, et al. Preconceptuai design of hyfire[C]. Fusion Reactor Design and Technology: Proceedings of the Third Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology, Organized by the International Atomic Energy Agency and Held in Tokyo, Japan, October, 5-16, 1981.
[39] National Hydrogen Energy Roadmap Workshop. National hydrogen energy roadmap[EB/OL]. [2017-03-14]. http://www.hydrosteed.com/images/PDF9.pdf.
[40] Milliken J. Hydrogen, Fuel cells and infrastructure technologies program: multiyear research, development and demonstration plan[R]. National Renewable Energy Laboratory (NREL), Golden, CO, 2007.
[41] Hino R, Yan X L. Nuclear hydrogen production handbook[M]. Boca Raton, Boca Raton CRC Press, 2011.
[42] Sohal M S, O'Brien J E, Stoots C M, et al. Critical causes of degradation in integrated laboratory scale cells during high-temperature electrolysis[J]. Idaho National Laboratory internal technical report INL/EXT-09-16004, 2009.
[43] Zhang X Y, O' Brien J E, O' Brien R C, et al. Improved durability of SOEC stacks for high temperature electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(1): 20-28.
[44] Zhang X Y, O' Brien J E, Tao G, et al. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment[J]. Journal of Power Sources, 2015, 297: 90-97.
[45] MSRI. Hydrogen production electrolyzer technology[EB/OL]. [2017-03-14]. http://www.msrihome.com/technology/hydrogen-production.p hp.
[46] Ceramatec. Technology [EB/OL]. [2017-03-14]. http://www.ceramatec. com/technology/.
[47] Sharma V I, Yildiz B. Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode[J]. Journal of the Electrochemical Society, 2010, 157(3): B441-B448.
[48] Mawdsley J R, David Carter J, Jeremy Kropf A, et al. Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks[J]. International Journal of Hydrogen Energy, 2009, 34(9): 4198-4207.
[49] Hino R, Haga K, Aita H, et al. 38. R&D on hydrogen production by high-temperature electrolysis of steam[J]. Nuclear Engineering and Design, 2004, 233(1): 363-375.
[50] Terada A, Iwatsuki J, Ishikura S, et al. Development of hydrogen production technology by thermochemical water splitting IS process pilot test plan[J]. Journal of Nuclear Science and Technology, 2007, 44(3): 477-482.
[51] Fujiwara S, Kasai S, Yamauchi H, et al. Hydrogen production by high temperature electrolysis with nuclear reactor[J]. Progress in Nuclear Energy, 2008, 50(2): 422-426.
[52] Yang C H, Jin C, Chen F L. Performances of micro-tubular solid oxide cell with novel asymmetric porous hydrogen electrode[J]. Electrochimica Acta, 2010, 56(1): 80-84.
[53] Liu Q, Yang C H, Dong X H, et al. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35: 10039-10044.
[54] Gopalan S, Mosleh M, Hartvigsen J J, et al. Analysis of self-sustaining recuperative solid oxide electrolysis systems[J]. Journal of Power Sources, 2008, 185(2): 1328-1333.
[55] Eguchi K, Hatagishi T, Arai H. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia-or ceriabased electrolyte[J]. Solid State Ionics, 1996, 86: 1245-1249.
[56] Kim J, Ji H I, Dasari H P, et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1225-1235.
[57] Yoo J, Woo S K, Yu J H, et al. La0.8Sr0.2MnO3 and Mn1.5Co1.5O4 double layer coated by electrophoretic deposition on Crofer22 APU for SOEC interconnect applications[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1542-1547.
[58] Koh J H, Yoon D J, Oh C H. Simple electrolyzer model development for high-temperature electrolysis system analysis using solid oxide electrolysis cell[J]. Journal of Nuclear Science and Technology, 2010, 47(7): 599-607.
[59] 中国氢能源网. 2012中国燃料电池和氢能报告[EB/OL]. 2012-03-29 [2017-03-14]. http://www.china-hydrogen.org/hydrogen/mix/2012-03-29/1512.html. China-hydrogen.org. Report on China's fuel cell and hydrogen energy 2012 [EB/OL]. 2012-03-29 [2017-03-14]. http://www.china-hydrogen.org/hydrogen/mix/2012-03-29/1512.html.
[60] 国务院办公厅. 能源发展战略行动计划(2014—2020年)(摘录)[J]. 上海节能, 2014(12): 1-2. General Office of the State Council of the People's Republic of China. Energy development strategic action plan (2014—2020) (Excerpt) [J]. Shanghai Energy Conservation, 2014(12): 1-2.
[61] Yu B, Zhang W Q, Xu J M, et al. Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2829-2835.
[62] Yu B, Zhang W Q, Chen J, et al. Advance in highly efficient hydrogen production by high temperature steam electrolysis[J]. Science China Chemistry, 2008, 51(4): 289-304.
[63] 赵晨欢, 张文强, 于波, 等. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288. Zhao Chenhuan, Zhang Wenqiang, Yu Bo, et al. Solid oxide electrolyzer cells[J]. Progress in Chemistry, 2016, 28(8): 1265-1288.
[64] 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5): 778-786. Zhang Wenqiang, Yu Bo, Chen Jing, et al. Hydrogen production through solid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry, 2008, 20(5): 778-786.
[65] 马景陶, 林旭平, 葛奔, 等. SOEC电解质与氢电极的流延制备、共烧结及性能[J]. 稀有金属材料与工程, 2009(增刊1): 700-703. Ma Jingtao, Lin Xuping, Ge Ben, et al. Preparation and co-sintering of electrolyte and hydrogen electrode via tape casting and its performance for SOEC[J]. Rare Metal Materials and Engineering, 2009, (Suppl 1): 700-703.
[66] 汪峰, 缪馥星, 官万兵. 不同还原条件下制备的固体氧化物燃料电池支撑阳极Ni-YSZ的性能[J]. 硅酸盐学报, 2015, 43(5): 650-656. Wang Feng, Miaow Fuxing, Guan Wanbing. Properties of supportedanode Ni-YSZ for planar solid oxide fuel cell prepared by different reduction processes [J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 650-656.
[67] 官万兵. 宁波材料所SOFC电堆模块研发取得全面提升[J]. 硅酸盐通报, 2013(6): 1140-1140. Guan Wanbing. R&D of SOFC stack in Institute of Materials Technology (Ning Po) have obtained a comprehensive promotion [J]. Bulletin of the Chinese Ceramic Society, 2013(6): 1140-1140.
[68] 宁波材料所固体氧化物燃料电池单堆运行功率达到2 kW[J]. 功能材料信息, 2013(增刊1): 90-90. Anon. The operation power of single stack of SOFC in Institute of Materials Technology (Ning Po) has reached 2 kW[J]. Functional Materials Information, 2013(Suppl 1): 90-90.
[69] 宁波材料技术与工程研究所. 宁波材料所SOEC高温电解水制氢取得重要进展[EB/OL]. [2011-04-11]. http://www.cas.cn/ky/kyjz/201104/t20110411_3110473.shtml. Institute of Materials Technology (Ning Po). Hydrogen production through SOEC high temperature electrolysis in Institute of Materials Technology (Ningpo) has made a significant progress [EB/OL]. [2011-04-11]. http://www.cas.cn/ky/kyjz/201104/t20110411_3110473.shtml.
[70] 匡佳雯, 史翊翔, 蔡宁生, 等. 固体氧化物电解池H2O-CO2共电解制取烃类燃料反应特性研究[J]. 中国电机工程学报, 2012, 32(17): 31-35. Kuang Jiawen, Shi Yuxiang, Cai Ningsheng, et al. Reaction characteristics of hydrocarbon production by H2O-CO2 co-electrolysis in solid oxide electrolysis cells[J]. Proceedings of the CSEE, 2012, 32(17): 31-35.
[71] 王振, 于波, 张文强, 等. 高温共电解HO/CO制备清洁燃料[J]. 化学进展, 2013, 25(7): 1229-1236. Wang Zhen, Yu Bo, Zhang Wenqiang, et al. Clean fuel production through high temperature co-electrolysis of H2O and CO2[J]. Progress in Chemistry, 2013, 25(7): 1229-1236.
[72] 范慧, 宋世栋, 韩敏芳. 固体氧化物电解池共电解H2O/CO2研究进展[J]. 中国工程科学, 2013, 15(2): 107-112. Fan Hui, Song Shidong, Han Minfang. Development of H2O/CO2 coelectrolysis in solid oxide electrolysis cell[J]. Engineering Science, 2013, 15(2): 107-112.
[73] Li W Y, Wang H J, Shi Y X, et al. Performance and methane production characteristics of H2O-CO2 co-electrolysis in solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11104-11109.
[74] Chen L, Chen F L, Xia C R. Direct synthesis of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells[J]. Energy & Environmental Science, 2014, 7(12): 4018-4022.
[75] Shi Y X, Luo Y, Cai N S, et al. Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells[J]. Electrochimica Acta, 2013, 88: 644-653.
[76] Xing R M, Wang Y R, Zhu Y Q, et al. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ-Cu ceramic composite electrode[J]. Journal of Power Sources, 2015, 274: 260-264.
[77] Yang Z B, Jin C, Yang C H, et al. Ba0.9Co0.5Fe0.4Nb0.1O3-δ as novel oxygen electrode for solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11572-11577.
[78] Wang Y Q, Yang Z B, Han M F, et al. Optimization of Sm0.5Sr0.5CoO3-δ-infiltrated YSZ electrodes for solid oxide fuel cell/electrolysis cell[J]. RSC Advances, 2016, 6(113): 112253-112259.
[79] DOE. DOE Technical Targets for Hydrogen Production from Electrolysis [EB/OL]. [2017-03-14]. https://energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis.
文章导航

/