专题论文

中低温固体氧化物燃料电池电解质材料研究进展

  • 林旭平 ,
  • 徐舜 ,
  • 艾德生 ,
  • 葛奔 ,
  • 彭志坚
展开
  • 1. 清华大学核能与新能源技术研究院, 清华大学核能与新能源技术研究院先进核能技术协同创新中心, 北京 100084;
    2. 中国地质大学(北京)工程技术学院, 北京 100083;
    3. 中国矿业大学(北京)机电与信息工程学院, 北京 100083
林旭平,副研究员,研究方向为新材料技术,电子信箱:xplin@mail.tsinghua.edu.cn;徐舜,硕士研究生,研究方向为固体氧化物燃料电池,电子信箱:xushun2013@163.com

收稿日期: 2016-11-25

  修回日期: 2017-03-03

  网络出版日期: 2017-05-08

基金资助

国家科技重大专项(2010ZX06901-020);国家自然科学基金项目(51272127,51502153,61274015)

Review of the electrolyte materials in medium or low temperature solid oxide fuel cell

  • LIN Xuping ,
  • XU Shun ,
  • AI Desheng ,
  • GE Ben ,
  • PENG Zhijian
Expand
  • 1. Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China;
    3. School of Mechanical Electronic & Information Engineering, China University of Mining and Technology, Beijing 100083, China

Received date: 2016-11-25

  Revised date: 2017-03-03

  Online published: 2017-05-08

摘要

固体氧化物燃料电池(SOFC)是一种全固态的电化学能量转换装置,它的能量转换效率高达70%,且其尾气中的有毒成分含量极低,是未来化石燃料发电技术的理想选择之一。SOFC 具有较宽的工作温度范围,通常在450~1000℃。高温下(800~1000℃)尽管SOFC 在燃料选择方面具有更高的灵活性,但是材料性能衰减的加快、运营成本的提高,以及系统的开关速度变慢等一系列缺点也愈加明显。因而,SOFC 主要朝着低温化的趋势发展。降低SOFC 工作温度最有效的方法是提高固体电解质的电导率,以尽量减少电池的欧姆阻抗。本文综述了萤石型、钙钛矿型和复合型3 类固体电解质材料国内外的研究进展,同时展望了未来中低温SOFC 电解质材料的研究方向。钙钛矿型电解质材料在中低温下具有较高的纯离子电导率,且具备丰富的改性空间,有望成为将来中低温SOFC 电解质材料的首选。

本文引用格式

林旭平 , 徐舜 , 艾德生 , 葛奔 , 彭志坚 . 中低温固体氧化物燃料电池电解质材料研究进展[J]. 科技导报, 2017 , 35(8) : 47 -53 . DOI: 10.3981/j.issn.1000-7857.2017.08.005

Abstract

The solid oxide fuel cell (SOFC), a kind of all solid state electrochemical energy conversion device with high energy conversion efficiency (up to 70%) and less environmental pollution, is one of the ideal choice for the fossil fuel power generation technology in the future. The SOFC has a wide operating temperature range of about 450~1000℃. At high temperatures (800~1000℃), the fuel selection is more flexible, but with a series of problems, such as the more serious material performance attenuation, the higher system cost and the slower switching speed. Thus, reducing the operating temperature of the SOFC becomes an important research target at present. One of the major challenges in reducing the operating temperature of the SOFC is the development of solid electrolyte materials which can provide a sufficient conductivity to make the ohmic loss of the system acceptable during the operation process. In this paper, the research progress of the solid electrolyte materials development for the SOFC is reviewed, including the fluorite type, the perovskite type and the compound type. And the future research directions of the solid electrolyte materials towards medium or low temperature solid oxide fuel cells are discussed. The perovskite type electrolyte material is expected to become the first choice for medium and low temperature SOFC electrolyte materials in future, due to its high ionic conductivity and abundant modified space.

参考文献

[1] 李永峰, 董新法, 林维明. 固体氧化物燃料电池的现状和未来[J]. 电源技术, 2002, 26(6): 462-465. Li Yongfeng, Dong Xinfa, Lin Weiming. State-of-art and future of solid oxide fuel celI[J]. Chinese Journal of Power Sources, 2002, 26(6), 462-465.
[2] George R A, Bessette N F. Reducing the manufacturing cost of tubular solid oxide fuel cell technology[J]. Journal of Power Sources, 1998, 71 (1): 131-137.
[3] Zhu B, Albinsson I, Andersson C, et al. Electrolysis studies based on ceria-based composites[J]. Electrochemistry Communications, 2006, 8 (3): 495-498.
[4] Singhal S C. High-temperature solid oxide fuel cells: Fundamentals, design and applications[M]. New York: Elsevier Advanced Technology, 2003.
[5] Etsell T H, Flengas S N. Electrical properties of solid oxide electrolytes[J]. Chemical Reviews, 1970, 70(3): 339-376.
[6] Taylor M A, Kilo M, Borchardt G, et al. 96Zr diffusion in polycrystalline scandia stabilized zirconia[J]. Journal of the European Ceramic Society, 2005, 25(9): 1591-1595.
[7] Molenda J, Świerczek K, Zając W. Functional materials for the ITSOFC[ J]. Journal of Power Sources, 2007, 173(2): 657-670.
[8] Arachi Y, Sakai H, Yamamoto O, et al. Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system[J]. Solid State Ionics, 1999, 121 (1): 133-139.
[9] Badwal S P S, Ciacchi F T, Milosevic D. Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation[J]. Solid State Ionics, 2000, 136: 91-99.
[10] Kharton V V, Marques F M B, Atkinson A. Transport properties of solid oxide electrolyte ceramics: A brief review[J]. Solid State Ionics, 2004, 174(1): 135-149.
[11] Shi H, Ran R, Shao Z. Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1125-1132.
[12] Ruh R, Garrett H J, Domagala R F, et al. The System zirconia-scandia[J]. Journal of the American Ceramic Society, 1977, 60(9-10): 399-403.
[13] Spiridonov F M, Popova L N, Popil'Skii R Y. On the phase relations and the electrical conductivity in the system ZrO2-Sc2O3[J]. Journal of Solid State Chemistry, 1970, 2(3): 430-438.
[14] Ishii T. Structural phase transition and ionic conductivity in 0.88ZrO2-(0.12-x)Sc2O3-xAl2O3[J]. Solid State Ionics, 1995, 78(3): 333-338.
[15] Sasaki K, Susuki K, Iyoshi A, et al. H2S poisoning of solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2006, 153(11): A2023-A2029.
[16] Gong M, Liu X, Trembly J, et al. Sulfur-tolerant anode materials for solid oxide fuel cell application[J]. Journal of Power Sources, 2007, 168(2): 289-298.
[17] Yahiro H, Eguchi K, Arai H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell[J]. Solid State Ionics, 1989, 36(1): 71-75.
[18] Momma A, Kaga Y, Takano K, et al. Experimental investigation of anodic gaseous concentration of a practical seal-less solid oxide fuel cell[J]. Journal of Power Sources, 2005, 145(2): 169-177.
[19] Badwal S P S, Ciacchi F T, Drennan J. Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments[J]. Solid State Ionics, 1999, 121(1): 253-262.
[20] Eguchi K, Hatagishi T, Arai H. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia-or ceriabased electrolyte[J]. Solid State Ionics, 1996, 86: 1245-1249.
[21] Noh H S, Yoon K J, Kim B K, et al. Thermo-mechanical stability of multi-scale-architectured thin-film-based solid oxide fuel cells assessed by thermal cycling tests[J]. Journal of Power Sources, 2014, 249 (1): 125-130
[22] Bettge M. Processing of porous electrodes for solid oxide fuel cells using tape casting and unidirectional freeze-drying[D]. Florida: The Florida State University, 2004
[23] Duncan K L, Lee K T, Wachsman E D. Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes[J]. Journal of Power Sources, 2011, 196(5): 2445-2451.
[24] Jiang N, Wachsman E D. Structural stability and conductivity of phase-stabilized cubic bismuth oxides[J]. Journal of the American Ceramic Society, 1999, 82(11): 3057-3064.
[25] Takahashi T, Iwahara H. Oxide ion conductors based on bismuthsesquioxide[J]. Materials Research Bulletin, 1978, 13(12): 1447-1453.
[26] Shuk P, Wiemhöfer H D, Guth U, et al. Oxide ion conducting solid electrolytes based on Bi2O3[J]. Solid State Ionics, 1996, 89(3): 179-196.
[27] Takahashi T, Iwahara H, Nagai Y. High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3[J]. Journal of Applied Electrochemistry, 1972, 2(2): 97-104.
[28] Sammes N M, Tompsett G A, Näfe H, et al. Bismuth based oxide electrolytes-structure and ionic conductivity[J]. Journal of the European Ceramic Society, 1999, 19(10): 1801-1826.
[29] Jiang N, Wachsman E D, Jung S H. A higher conductivity Bi2O3-based electrolyte[J]. Solid State Ionics, 2002, 150(3): 347-353.
[30] Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics[M]. Beijing: Higher Education Press, 2010: 136.
[31] Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J]. Journal of the American Chemical Society, 1994, 116(9): 3801-3803.
[32] Chen T Y, Fung K Z. Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3[J]. Journal of Power Sources, 2004, 132(1): 1-10.
[33] Stevenson J W, Armstrong T R, Pederson L R, et al. Effect of a-site cation nonstoichiometry on the properties of doped lanthanum gallate[J]. Solid State Ionics, 1998, 113: 571-583.
[34] Ishihara T, Matsuda H, Takita Y. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide[J]. Solid State Ionics, 1995, 79: 147-151.
[35] Sebastian L, Shukla A K, Gopalakrishnan J. La0.9Sr0.1Ga0.8M0.2O3-δ (M= Mn, Co, Ni, Cu or Zn): Transition metal-substituted derivatives of lanthanum-strontium-galliummagnesium (LSGM) perovskite oxide ion conductor[J]. Bulletin of Materials Science, 2000, 23(3): 169-173.
[36] Trofimenko N, Ullmann H. Co-doped LSGM: composition-structureconductivity relations[J]. Solid State Ionics, 1999, 124(3): 263-270.
[37] Khorkounov B A, Näfe H, Aldinger F. Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity[J]. Journal of Solid State Electrochemistry, 2006, 10(7): 479-487.
[38] 钟海涛. La0.9Sr0.1Ga0.8Mg0.2O3-δ 电解质材料的改性研究[D]. 北京: 清华大学, 2014. Zhong Haitao. Research of the modification of La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte material[D]. Beijing: Tsinghua University Technology, 2014.
[39] Lee J H, Kim K N, Kim J W S J, et al. An investigation of the interfacial stability between the anode and electrolyte layer of LSGM-based SOFCs[J]. Journal of Materials Science, 2007, 42(6): 1866-1871.
[40] Huang K, Wan J H, Goodenough J B. Increasing power density of LSGM-based solid oxide fuel cells using new anode materials[J]. Journal of The Electrochemical Society, 2001, 148(7): A788-A794.
[41] Wan J H, Yan J Q, Goodenough J B. LSGM-based solid oxide fuel cell with 1.4 W/cm2 power density and 30 day long-term stability[J]. Journal of The Electrochemical Society, 2005, 152(8): A1511-A1515.
[42] Guo W, Liu J, Zhang Y. Electrical and stability performance of anodesupported solid oxide fuel cells with strontium-and magnesium-doped lanthanum gallate thin electrolyte[J]. Electrochimica Acta, 2008, 53 (13): 4420-4427.
[43] Kreuer K D. Proton-conducting oxides[J]. Annual Review of Materials Research, 2003, 33(1): 333-359.
[44] Fabbri E, Bi L, Pergolesi D, et al. Towards the next generation of solid oxide fuel cells operating below 600℃ with chemically stable proton-conducting electrolytes[J]. Advanced Materials, 2012, 24(2): 195-208.
[45] Medvedev D, Murashkina A, Pikalova E, et al. BaCeO3: Materials development, properties and application[J]. Progress in Materials Science, 2014, 60: 72-129.
[46] Medvedev D A, Lyagaeva J G, Gorbova E V, et al. Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes[J]. Progress in Materials Science, 2016, 75: 38-79.
[47] Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3: 359-363.
[48] Uchida H, Ogaki K, Iwahara H. High temperature hydrogen sensor and steam sensor using barium cerium oxide (BaCeO3)-based proton conducting ceramics[J]. Proceedings of the Electrochemical Society, 1987, 87-89: 172-9.
[49] Zhang G B, Smyth D M. Protonic conduction in Ba2In2O5[J]. Solid State Ionics, 1995, 82(3): 153-160.
[50] Animitsa I, Neiman A, Kochetova N, et al. Chemical diffusion of water in the double perovskites Ba4Ca2Nb2O11 and Sr6Ta2O11[J]. Solid State Ionics, 2006, 177(26): 2363-2368.
[51] Amsif M, Marrero-Lopez D, Ruiz-Morales J C, et al. Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3-δ proton conductors[J]. Journal of Power Sources, 2011, 196(7): 3461-3469.
[52] Kikuchi J, Koga S, Kishi K, et al. Ionic conductivity in lanthanoid iondoped BaCeLnO3 electrolytes[J]. Solid State Ionics, 2008, 179(27): 1413-1416.
[53] Sharova N V, Gorelov V P. Electroconductivity and ion transport in protonic solid electrolytes BaCe0.85R0.15O3-δ, where R is a rare-earth element[J]. Russian Journal of Electrochemistry, 2003, 39(5): 461-466.
[54] Zhao F, Chen F. Performance of solid oxide fuel cells based on proton-conducting BaCe0.7In0.3-xYxO3-δ electrolyte[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11194-11199.
[55] Bi L, Zhang S, Zhang L, et al. Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2421-2425.
[56] Babilo P, Uda T, Haile S M. Processing of yttrium-doped barium zirconate for high proton conductivity[J]. Journal of Materials Research, 2007, 22(05): 1322-1330.
[57] Lyagaeva Y G, Medvedev D A, Demin A K, et al. Specific features of preparation of dense ceramic based on barium zirconate[J]. Semiconductors, 2014, 48(10): 1353-1358.
[58] Sun W, Jiang Y, Wang Y, et al. A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(1): 62-68.
[59] Li B, Liu S, Liu X, et al. Study on GDC-LSGM composite electrolytes for intermediate-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11392-11397.
[60] Xu D, Liu X, Wang D, et al. Fabrication and characterization of SDCLSGM composite electrolytes material in IT-SOFCs[J]. Journal of Alloys and Compounds, 2007, 429(1): 292-295.
[61] Wu Y C, Lee M J, Li X. Analysis of the microstructure and physical properties of La0.85Sr0.15Ga0.8Mg0.2O2.825 and Ce0.85Sm0.15O1.925 composite electrolytes used in solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2015, 35(16): 4485-4495.
[62] Wang X, Ma Y, Raza R, et al. Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs[J]. Electrochemistry Communications, 2008, 10(10): 1617-1620.
[63] Wu J, Zhu B, Mi Y, et al. A novel core-shell nanocomposite electrolyte for low temperature fuel cells[J]. Journal of Power Sources, 2012, 201: 164-168.
[64] Jing Y, Patakangas J, Lund P D, et al. An improved synthesis method of ceria-carbonate based composite electrolytes for low-temperature SOFC fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38 (36): 16532-16538.
[65] Fan L, Wang C, Chen M, et al. Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells[J]. Journal of Power Sources, 2013, 234: 154-174.
[66] Huang J, Gao Z, Mao Z. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4270-4275.
[67] Xia C, Li Y, Tian Y, et al. Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte[J]. Journal of Power Sources, 2010, 195(10): 3149-3154.
文章导航

/