专题论文

一维无铅压电微纳材料在能量转换领域的研究进展

  • 程丽乾 ,
  • 冯美 ,
  • 张博然 ,
  • 张慧峰
展开
  • 中国矿业大学(北京)材料科学与工程系, 北京 100083
程丽乾,讲师,研究方向为压电陶瓷材料,电子信箱:chenglq@cumtb.edu.cn

收稿日期: 2016-12-13

  修回日期: 2017-02-27

  网络出版日期: 2017-05-08

基金资助

国家自然科学基金青年科学基金项目(51602345);中央高校基本科研业务费专项资金(2016QJ01);清华大学新型陶瓷与精细工艺国家重点实验室资助项目(KF201512)

Advances of one dimensional lead-free piezoelectric micro/nanomaterials in the field of energy conversion

  • CHENG Liqian ,
  • FENG Mei ,
  • ZHANG Boran ,
  • ZHANG Huifeng
Expand
  • Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Received date: 2016-12-13

  Revised date: 2017-02-27

  Online published: 2017-05-08

摘要

能源危机和环境污染是当今社会发展面临的主要问题,绿色新能源及新能源材料是解决问题的关键。压电晶体可实现机械能与电能之间的相互转换,成为能源与材料领域的重点研究对象。在压电材料体系中,无铅体系由于具有较为优秀的压电性能、且不含有毒物质铅等一系列优势而倍受关注。随着材料向微纳化和低维化的发展,一维无铅压电微纳材料成为目前压电领域的研究热点之一,然而其合成与评价还处在起步阶段,与之相关的能量转换等方面的研究与应用也仍在探索阶段。本文以一维无铅压电微纳材料为对象,概况介绍了产物生长控制合成的方法,简要说明了在能量转换领域的相关应用,最后对一维无铅压电微纳材料在能量转换领域的发展趋势进行了展望,为一维无铅压电微纳材料在能量转换领域的理论研究、实际应用及未来发展提供参考。

本文引用格式

程丽乾 , 冯美 , 张博然 , 张慧峰 . 一维无铅压电微纳材料在能量转换领域的研究进展[J]. 科技导报, 2017 , 35(8) : 54 -59 . DOI: 10.3981/j.issn.1000-7857.2017.08.006

Abstract

Green energies, with their new candidates, have attracted worldwide interest due to the threatening of the global environmental pollution and the energy crises. The piezoelectric materials can generate an output signal with a strain, and has become one of the key research objects in the field of energy and materials. The lead-free system has attracted much attention among the piezoelectric material systems due to its comparable piezoelectric properties and the lead-free nature. With the development of micro/nano-structures, one dimensional lead-free piezoelectric micro/nano-materials have become one of the most popular research topics in the field of piezoelectric systems. However, the preparation and the characterization of one-dimensional lead-free piezoelectric micro/nano-materials is still in the initial stage. Moreover, the related research and application of the energy conversion and other aspects are also under the exploration. One dimensional lead-free piezoelectric micro/nano-materials are taken as a focus in this review, together with the syntheses methods of crystal growth and a brief description of the application in the field of the energy conversion, and the prospect of one-dimensional lead-free piezoelectric micro/nano materials in the field of energy conversion is also discussed.

参考文献

[1] Wang Z L. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators[J]. MRS Bulletin, 2007, 32(2): 109-116.
[2] Qin Y, Wang X and Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813.
[3] Wang Z L. Piezotronic and piezophototronic effects[J]. Journal of Physical Chemistry Letters, 2010, 1(9): 1388-1393.
[4] Wang Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics[J]. Nano Today, 2010, 5(6): 540-552.
[5] Cross E. Materials science-lead-free at last[J]. Nature, 2004, 432 (7013): 24-25.
[6] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.
[7] Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034.
[8] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 1999, 32(5): 435-445.
[9] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Advanced Materials, 2003, 15(5): 353-389.
[10] Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105.
[11] Wang Z, Hu J, Suryavanshi A P, et al. Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load[J]. Nano Letters, 2007, 7(10): 2966-2969.
[12] Yang R, Qin Y, Li C, et al. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator[J]. Nano Letters, 2009, 9(3): 1201-1205.
[13] Zhu G, Yang R, Wang S, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array[J]. Nano Letters, 2010, 10(8): 3151-3155.
[14] Park K I, Lee M, Liu Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials, 2012, 24(22): 2999-3004, 2937.
[15] Jung J H, Lee M, Hong J I, et al. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator[J]. Acs Nano, 2011, 5(12): 10041-10046.
[16] Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires[J]. Progress in Solid State Chemistry, 2003, 31(1-2): 5-147.
[17] Mao Y B, Park T J , Wong S S. Synthesis of classes of ternary metal oxide nanostructures[J]. Chemical Communications, 2005, (46): 5721-5735.
[18] Bhalla A S, Guo R Y, Roy R. The perovskite structure-a review of its role in ceramic science and technology[J]. Materials Research Innovations, 2000, 4(1): 3-26.
[19] Xu S, Hansen B J, Wang Z L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics[J]. Nature Communications, 2010, 1.
[20] Chen X, Xu S, Yao N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers[J]. Nano Letters, 2010, 10(6): 2133-2137.
[21] Yun W S, Urban J J, Gu Q, et al. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe Microscopy[J]. Nano Letters, 2002, 2(5): 447-450.
[22] Pribosic I, Makovec D, Drofenik M. Formation of nanoneedles and nanoplatelets of KNbO3 perovskite during templated crystallization of the precursor gel[J]. Chemistry of Materials, 2005, 17(11): 2953-2958.
[23] Cho S B, Oledzka M, Riman R E. Hydrothermal synthesis of acicular lead zirconate titanate (PZT)[J]. Journal of Crystal Growth, 2001, 226 (2-3): 313-326.
[24] Limmer S J, Seraji S, Forbess M J, et al. Electrophoretic growth of lead zirconate titanate nanorods[J]. Advanced Materials, 2001, 13(16): 1269-1272.
[25] Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate[J]. Journal of the American Chemical Society, 2002, 124(7): 1186-1187.
[26] Liu J F, Li X L, Li Y D. Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method[J]. Journal of Nanoscience and Nanotechnology, 2002, 2(6): 617-619.
[27] Yi X, Li J. Synthesis and optical property of NaTaO3 nanofibers prepared by electrospinning[J]. Journal of Sol-Gel Science and Technology, 2009, 53(2): 480-484.
[28] Fukushima S, Karube Y, Kawakami H. Preparation of ultrafine uniform electrospun polyimide nanofiber[J]. Polymer Journal, 2010, 42(6): 514-518.
[29] Starr J D, Andrew J S. Janus-type bi-phasic functional nanofibers[J]. Chemical Communications, 2013, 49(3): 4151-4153.
[30] Liu Y, Zhang Y, Chow M J, et al. Biological ferroelectricity uncovered in aorticwalls by piezoresponse force microscopy[J]. Physical Review Letters, 2012, 108(6): 078103.
[31] Yu Q, Li J F, Sun W, et al. Orientation-dependent piezoelectricity and domain characteristics of tetragonal Pb(Zr0.3,Ti0.7)0.98Nb0.02O3 thin films on Nb-doped SrTiO3 substrates[J]. Applied Physics Letters, 2014, 104(1): 012908.
[32] Cheng L Q, Wang K, Li J F, et al. Piezoelectricity of lead-free (K, Na) NbO3 nanoscale single crystals[J]. Journal of Materials Chemistry C, 2014, 2(43): 9091-9098.
[33] Cheng L Q, Wang K, Yu Q, et al. Structure and composition characterization of lead-free (K, Na)NbO3 piezoelectric nanorods synthesized by the molten-salt reaction[J]. Journal of Materials Chemistry C, 2014, 2(8): 1519-1524.
[34] Wang Z, Hu J, Yu M F. One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire[J]. Applied Physics Letters, 2006, 89(26): 263119.
文章导航

/