[1] Wang Z L. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators[J]. MRS Bulletin, 2007, 32(2): 109-116.
[2] Qin Y, Wang X and Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813.
[3] Wang Z L. Piezotronic and piezophototronic effects[J]. Journal of Physical Chemistry Letters, 2010, 1(9): 1388-1393.
[4] Wang Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics[J]. Nano Today, 2010, 5(6): 540-552.
[5] Cross E. Materials science-lead-free at last[J]. Nature, 2004, 432 (7013): 24-25.
[6] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.
[7] Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034.
[8] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 1999, 32(5): 435-445.
[9] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Advanced Materials, 2003, 15(5): 353-389.
[10] Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102-105.
[11] Wang Z, Hu J, Suryavanshi A P, et al. Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load[J]. Nano Letters, 2007, 7(10): 2966-2969.
[12] Yang R, Qin Y, Li C, et al. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator[J]. Nano Letters, 2009, 9(3): 1201-1205.
[13] Zhu G, Yang R, Wang S, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array[J]. Nano Letters, 2010, 10(8): 3151-3155.
[14] Park K I, Lee M, Liu Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials, 2012, 24(22): 2999-3004, 2937.
[15] Jung J H, Lee M, Hong J I, et al. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator[J]. Acs Nano, 2011, 5(12): 10041-10046.
[16] Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires[J]. Progress in Solid State Chemistry, 2003, 31(1-2): 5-147.
[17] Mao Y B, Park T J , Wong S S. Synthesis of classes of ternary metal oxide nanostructures[J]. Chemical Communications, 2005, (46): 5721-5735.
[18] Bhalla A S, Guo R Y, Roy R. The perovskite structure-a review of its role in ceramic science and technology[J]. Materials Research Innovations, 2000, 4(1): 3-26.
[19] Xu S, Hansen B J, Wang Z L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics[J]. Nature Communications, 2010, 1.
[20] Chen X, Xu S, Yao N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers[J]. Nano Letters, 2010, 10(6): 2133-2137.
[21] Yun W S, Urban J J, Gu Q, et al. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe Microscopy[J]. Nano Letters, 2002, 2(5): 447-450.
[22] Pribosic I, Makovec D, Drofenik M. Formation of nanoneedles and nanoplatelets of KNbO3 perovskite during templated crystallization of the precursor gel[J]. Chemistry of Materials, 2005, 17(11): 2953-2958.
[23] Cho S B, Oledzka M, Riman R E. Hydrothermal synthesis of acicular lead zirconate titanate (PZT)[J]. Journal of Crystal Growth, 2001, 226 (2-3): 313-326.
[24] Limmer S J, Seraji S, Forbess M J, et al. Electrophoretic growth of lead zirconate titanate nanorods[J]. Advanced Materials, 2001, 13(16): 1269-1272.
[25] Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate[J]. Journal of the American Chemical Society, 2002, 124(7): 1186-1187.
[26] Liu J F, Li X L, Li Y D. Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method[J]. Journal of Nanoscience and Nanotechnology, 2002, 2(6): 617-619.
[27] Yi X, Li J. Synthesis and optical property of NaTaO3 nanofibers prepared by electrospinning[J]. Journal of Sol-Gel Science and Technology, 2009, 53(2): 480-484.
[28] Fukushima S, Karube Y, Kawakami H. Preparation of ultrafine uniform electrospun polyimide nanofiber[J]. Polymer Journal, 2010, 42(6): 514-518.
[29] Starr J D, Andrew J S. Janus-type bi-phasic functional nanofibers[J]. Chemical Communications, 2013, 49(3): 4151-4153.
[30] Liu Y, Zhang Y, Chow M J, et al. Biological ferroelectricity uncovered in aorticwalls by piezoresponse force microscopy[J]. Physical Review Letters, 2012, 108(6): 078103.
[31] Yu Q, Li J F, Sun W, et al. Orientation-dependent piezoelectricity and domain characteristics of tetragonal Pb(Zr0.3,Ti0.7)0.98Nb0.02O3 thin films on Nb-doped SrTiO3 substrates[J]. Applied Physics Letters, 2014, 104(1): 012908.
[32] Cheng L Q, Wang K, Li J F, et al. Piezoelectricity of lead-free (K, Na) NbO3 nanoscale single crystals[J]. Journal of Materials Chemistry C, 2014, 2(43): 9091-9098.
[33] Cheng L Q, Wang K, Yu Q, et al. Structure and composition characterization of lead-free (K, Na)NbO3 piezoelectric nanorods synthesized by the molten-salt reaction[J]. Journal of Materials Chemistry C, 2014, 2(8): 1519-1524.
[34] Wang Z, Hu J, Yu M F. One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire[J]. Applied Physics Letters, 2006, 89(26): 263119.