[1] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[3] Li Y, Song J, Yang J. A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 627-633.
[4] Chen J S, Lou X W D. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries[J]. Small, 2013, 9(11): 1877-1893.
[5] Chen J. Recent progress in advanced materials for lithium ion batteries[J]. Materials, 2013, 6(1): 156-183.
[6] Xiao G, Wang Y, Ning J, et al. Recent advances in IV-VI semiconductor nanocrystals: synthesis, mechanism, and applications[J]. RSC Advances, 2013, 3(22): 8104-8130.
[7] Srinivasan N R, Mitra S, Bandyopadhyaya R. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications[J]. Physical Chemistry Chemical Physics, 2014, 16(14): 6630-6640.
[8] Yin L, Chai S, Wang F, et al. Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery[J]. Ceramics International, 2016, 42(8): 9433-9437.
[9] Wang J, Song W L, Wang Z, et al. Facile fabrication of binder-free metallic tin nanoparticle/carbon nanofiber hybrid electrodes for lithiumion batteries[J]. Electrochimica Acta, 2015, 153: 468-475.
[10] Ji X, Huang X, Liu J, et al. Carbon-coated SnO2 nanorod array for lithium-ion battery anode material[J]. Nanoscale Research Letters, 2010, 5 (3): 649-654.
[11] Xue X Y, Chen Z H, Xing L L, et al. SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes[J]. Chemical Communications, 2011, 47(18): 5205-5207.
[12] Thomas R, Rao G M. SnO2 nanowire anchored graphene nanosheet matrix for the superior performance of Li-ion thin film battery anode[J]. Journal of Materials Chemistry A, 2015, 3(1): 274-280.
[13] Zeng W, Zheng F, Li R, et al. Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity[J]. Nanoscale, 2012, 4(8): 2760-2765.
[14] Zhou D, Song W L, Fan L Z. Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21472-21478.
[15] Zhang L, Wu H B, Lou X D W. Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries[J]. Materials Horizons, 2014, 1(1): 133-138.
[16] Lin Y S, Duh J G, Hung M H. Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery[J]. The Journal of Physical Chemistry C, 2010, 114(30): 13136-13141.
[17] Wang J H. Synthesis of mesoporous SnO2 and its application in lithium-ion battery[J]. Acta Physico-Chimica Sinica, 2008, 24(4): 681-685.
[18] Deng D, Lee J Y. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage[J]. Chemistry of Materials, 2008, 20(5): 1841-1846.
[19] Lou X W, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced Materials, 2006, 18(17): 2325-2329.
[20] Jiang L Y, Wu X L, Guo Y G, et al. SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14213-14219.
[21] Yang H X, Qian J F, Chen Z X, et al. Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hHydrothermal environment[J]. The Journal of Physical Chemistry C, 2007, 111(38): 14067-14071.
[22] Wu H B, Chen J S, Lou X W, et al. Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties[J] The Journal of Physical Chemistry C, 2011, 115(50): 24605-24610.
[23] Yin X M, Li C C, Zhang M, et al. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(17): 8084-8088.
[24] Wang Y, Niu S, Lu S. Controlled-synthesis and lithium storage properties of SnO2 porous core-shell spheres and core-in-double-shell spheres[J]. Materials Letters, 2015, 157: 209-211.
[25] Ding S J, Chen J S, Qi G G, et al. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors[J]. Journal of the American Chemical Society, 2010, 133(1): 21-23.
[26] Kravchyk K, Protesescu L, Bodnarchuk M I, et al. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes[J]. Journal of the American Chemical Society, 2013, 135(11): 4199-4202.
[27] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery[J]. The Journal of Physical Chemistry B, 2008, 112(47): 14836-14842.
[28] Ding S, Lou X. SnO2 nanosheet hollow spheres with improved lithium storage capabilities[J]. Nanoscale, 2011, 3(9): 3586-3588.
[29] Yan W W, Fang M, Tan X L, et al. Template-free fabrication of SnO2 hollow spheres with photoluminescence from Sn[J]. Materials Letters, 2010, 64(19): 2033-2035.
[30] Wang H Z, Liang J B, Fan H, et al. Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres[J]. Journal of Solid State Chemistry, 2008, 181(1): 122-129.
[31] Yec C C, Zeng H C. Synthesis of complex nanomaterials via Ostwald ripening[J]. Journal of Materials Chemistry A, 2014, 2(14): 4843-4851.
[32] Lou X W, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced Materials, 2006, 18(17): 2325-2329.
[33] Yin X M, Li C C, Zhang M, et al. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(17): 8084-8088.
[34] Zeng H C. Synthesis and self-assembly of complex hollow materials[J]. Journal of Materials Chemistry, 2011, 21(21): 7511-7526.
[35] Shi L, Bao K Y, Cao J, et al. Controlled fabrication of SnO2 solid and hollow nanocubes with a simple hydrothermal route[J]. Applied Physics Letters, 2008, 93(15): 152511.
[36] Hong K, Wang F F. Hydrothermal synthesis of hierarchical SnO2 microspheres for gas sensing and lithium-ion batteries applications: Fluoride-mediated formation of solid and hollow structures[J]. Journal of Materials Chemistry, 2012, 22(5): 2140-2148.
[37] Dou X, Sabba D, Mathews N, et al. Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells[J]. Chemistry of Materials, 2011, 23(17): 3938-3945.
[38] Li Z, Zhou Y, Yu T, et al. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell[J]. CrystEngComm, 2012, 14(20): 6462-6468.
[39] Sun P, You L, Sun Y, et al. Novel Zn-doped SnO2 hierarchical architectures: synthesis, characterization, and gas sensing properties[J]. CrystEngComm, 2012, 14(5): 1701-1708.
[40] Drake C, Seal S. Band gap energy modifications observed in trivalent In substituted nanocrystalline SnO2[J]. Applied Physics Letters, 2007, 90(23): 233117.
[41] Ara M, Wadumesthrige K, Meng T, et al. Effect of microstructure and Sn/C ratio in SnO2-graphene nanocomposites for lithium-ion battery performance[J]. RSC Advances, 2014, 4(39): 20540-20547.
[42] Chai X, Shi C, Liu E, et al. Hierarchically structured carbon-coated SnO2-Fe3O4 microparticles with enhanced lithium storage performance[J]. Applied Surface Science, 2016, 361: 1-10.
[43] Lian P, Wang J, Cai D, et al. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 116: 103-110.
[44] Xin X, Zhou X, Wu J, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano, 2012, 6(12): 11035-11043.
[45] Myung S T, Takahashi N, Komaba S, et al. Nanostructured TiO2 and its application in lithium-ion storage[J]. Advanced Functional Materials, 2011, 21(17): 3231-3241.
[46] Sun P, Sun L Y Y. Novel Zn-doped SnO2 hierarchical architectures: synthesis, characterization, and gas sensing properties[J]. CrystEngComm, 2012, 14(5): 1701-1708.
[47] Ding S, Chen J S, Qi G, et al. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors[J]. Journal of the American Chemical Society, 2010, 133(1): 21-23.
[48] Chen J S, Archer L A, Lou X W D. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 9912-9924.
[49] Wang Z, Luan D, Boey F Y C, et al. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability[J]. Journal of the American Chemical Society, 2011, 133(13): 4738-4741.
[50] Wang C, Zhou Y, Ge M, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity[J]. Journal of the American Chemical Society, 2009, 132(1): 46-47.
[51] Li Z, Zhou Y, Yu T, et al. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell[J]. CrystEngComm, 2012, 14(20): 6462-6468.
[52] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.
[53] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
[54] Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195): 638-641.
[55] Han X, Jin M, Xie S, et al. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties[J]. Angewandte Chemie, 2009, 121(48): 9344-9347.
[56] Chen X, Liu L, Peter Y Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750.
[57] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601): 2176-2179.
[58] Ariga K, Ji Q, McShane M J, et al. Inorganic nanoarchitectonics for biological applications[J]. Chemistry of Materials, 2011, 24(5): 728-737.
[59] Drake C, Seal S. Band gap energy modifications observed in trivalent In substituted nanocrystalline SnO2[J]. Applied Physics Letters, 2007, 90(23): 233117.
[60] Dou X, Sabba D, Mathews N. Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells[J]. Chemistry of Materials, 2011, 23 (17): 3938-3945.
[61] Wang H, Xi L, Tucek J, et al. Hierarchical assembly of Ti(IV)/Sn(II) co-doped SnO2 nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties[J]. Nanoscale, 2013, 5(19): 9101-9109.
[62] Han S, Jang B, Kim T, et al. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes[J]. Advanced Functional Materials, 2005, 15(11): 1845-1850.
[63] Lou X W, Wang Y, Yuan C L, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced Materials, 2006, 18(17): 2325-2329.
[64] Yang H G, Zeng H C. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites[J]. Angewandte Chemie, 2004, 116(44): 6056-6059.
[65] Liu R, Su W, He P, et al. Synthesis of SnO2/Sn hybrid hollow spheres as high performance anode materials for lithium ion battery[J]. Journal of Alloys and Compounds, 2016, 688: 908-913.
[66] Zhang D F, Sun L D, Yin J L, et al. Low-temperature fabrication of highly crystalline SnO2 nanorods[J]. Advanced Materials, 2003, 15(12): 1022-1025.
[67] Maiti A, Rodriguez J A, Law M, et al. SnO2 nanoribbons as NO2 sensors: insights from first principles calculations[J]. Nano Letters, 2003, 3 (8): 1025-1028.
[68] Göpel W, Schierbaum K D. SnO2 sensors: current status and future prospects[J]. Sensors and Actuators B: Chemical, 1995, 26(1-3): 1-12.
[69] Xu J Q, Wang D, Qin L P, et al. SnO2 nanorods and hollow spheres: Controlled synthesis and gas sensing properties[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 490-495.
[70] Prasittichai C, Hupp J T. Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: significant improvements in photovoltage via Al2O3 atomic layer deposition[J]. The Journal of Physical Chemistry Letters, 2010, 1(10): 1611-1615.
[71] Snaith H J, Stavrinadis A, Docampo P, et al. Lead-sulphide quantumdot sensitization of tin oxide based hybrid solar cells[J]. Solar Energy, 2011, 85(6): 1283-1290.
[72] Wada T, Ichitsubo T, Yubuta K, et al. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process[J]. Nano Letters, 2014, 14(8): 4505-4510.
[73] Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials, 2006, 5(7): 567-573.
[74] Guo Q, Sun Z, Gao M. Porous V2O5-SnO2/CNTs composites as high performance cathode materials for lithium-ion batteries[J]. Journal of Energy Chemistry, 2013, 22(2): 347-355.
[75] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery[J]. The Journal of Physical Chemistry B, 2008, 112(47): 14836-14842.
[76] Haruyama J, Sodeyama K, Han L. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255.
[77] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[78] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[79] Yue H, Wang S, Yang Z, et al. Ultra-thick porous films of grapheneencapsulated silicon nanoparticles as flexible anodes for lithium ion batteries[J]. Electrochimica Acta, 2015, 174: 688-695.
[80] Liu Y, Liu P, Wu D. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage[J]. Chemistry-A European Journal, 2015, 21(14): 5617-5622.
[81] Li Y, Zhu S, Liu Q, et al. Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery[J]. Journal of Materials Chemistry, 2012, 22(6): 2766-2773.
[82] Wang D, Li X, Wang J, et al. Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116(42): 22149-22156.
[83] Zhang X, Zhu H, Guo Z. Design and preparation of CNT@SnO2 coreshell composites with thin shell and its application for ethanol oxidation[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8841-8847.
[84] Ma C, Weimin Z. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ionbatteries[J]. Nanoscale, 2016, 8(7): 4121-4126.
[85] Shuai Chen Y, Yi X, Zhou Y. Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability[J]. Journal Materials Chemistry A, 2014, 2 (37):15582-15589.
[86] Zhang L, Jiang L, Yan H. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(26): 5462-5467.
[87] Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACS Nano, 2009, 3 (4): 907-914.
[88] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282.
[89] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.
[90] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Letters, 2008, 9(1): 72-75.
[91] Wang X, Tabakman S M, Dai H. Atomic layer deposition of metal oxides on pristine and functionalized graphene[J]. Journal of the American Chemical Society, 2008, 130(26): 8152-8153.
[92] Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UVassisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2(7): 1487-1491.
[93] Chen Y, Song B, Chen R M, et al. A study of the superior electrochemical performance of 3 nm SnO2 nanoparticles supported by graphene[J]. Journal of Materials Chemistry A, 2014, 2(16): 5688-5695.
[94] Liu X, Sun Q. An alumina stabilized graphene oxide wrapped SnO2 hollow sphere LIB anode with improved lithium storage[J]. RSC Advances, 2015, 5(122): 100783-100789.
[95] Bhaskar A, Deepa M. Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries[J]. Nanoscale, 2014, 6(18): 10762-10771.
[96] Liang J, Yu X Y, Zhou H, et al. Bowl-like SnO2@ carbon hollow particles as an advanced anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(47): 12803-12807.
[97] Zhu Z, Wang S, Du J, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithiumion batteries[J]. Nano Letters, 2013, 14(1): 153-157.
[98] Dong Y, Zhao Z, Wang Z, et al. Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2444-2451.
[99] Li Y, Meng Q, Ma J, et al. Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11146-11154.
[100] Wu P, Wang H, Tang Y W, et al. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: In situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities[J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3546-3552.
[101] Zhu J, Zhang G H. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries[J]. Nano Energy, 2014, 3: 80-87.