专题论文

SnO2基锂离子电池负极材料研究进展

  • 刘瑞平 ,
  • 苏伟明 ,
  • 李佳鑫 ,
  • 沈超 ,
  • 张超 ,
  • 贺鹏 ,
  • 王琪
展开
  • 中国矿业大学(北京)材料科学与工程系, 北京 100083
刘瑞平,副教授,研究方向为新能源电池研发,电子信箱:lrp@cumtb.edu.cn

收稿日期: 2016-10-25

  修回日期: 2017-03-14

  网络出版日期: 2017-05-08

基金资助

北京市自然科学基金项目(2162037);北京市科技新星计划项目(Z171100001117077);北京市优秀人才青年骨干计划项目(2015000020124G121);北京市大学生科学研究与创业行动计划项目(C201604033)

Progress of tin oxide-based anode materials for lithium-ion batteries

  • LIU Ruiping ,
  • SU Weiming ,
  • LI Jiaxin ,
  • SHEN Chao ,
  • ZHANG Chao ,
  • HE Peng ,
  • WANG Qi
Expand
  • Department of Materials Science and Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China

Received date: 2016-10-25

  Revised date: 2017-03-14

  Online published: 2017-05-08

摘要

作为一种N型半导体,二氧化锡基负极材料由于其拥有较高的理论比容量(782 mA·h·g-1)、高能量密度等优势受到了广泛关注。然而,由于二氧化锡负极材料在充放电过程中的体积效应和本身导电性较差等导致的其循环性能和倍率性能较差,从而制约了其作为锂离子电池负极材料的应用。本文从二氧化锡的纳米化及复合化(包括其与金属氧化物、无定型碳、碳纳米管和石墨烯等复合)2 方面综述了二氧化锡基锂离子电池负极材料的研究进展,同时对SnO2基锂离子电池负极材料的发展方向进行了展望。

本文引用格式

刘瑞平 , 苏伟明 , 李佳鑫 , 沈超 , 张超 , 贺鹏 , 王琪 . SnO2基锂离子电池负极材料研究进展[J]. 科技导报, 2017 , 35(8) : 60 -69 . DOI: 10.3981/j.issn.1000-7857.2017.08.007

Abstract

As an N-type semi-conductor, the tin dioxide (SnO2) based anode materials have received a great attention due to its high theoretical capacity (782 mA·h/g) and high energy density. However, the poor cycling performance resulting from the electrode pulverization and the electrical disconnection caused by large volume changes (about 300%) during the charge and discharge process and the poor rate properties resulting from the low electrical conductivity of SnO2 have limited its development. To address these problems, one strategy is to construct various nanostructures, including the nanoparticles, the nanowires, the nanofibers, the nanotubes, the nanosheets and the nanospheres. In addition to the nanosizing SnO2 particles, the SnO2 based hybrids as the anode materials for the LIBs have been also studied intensively to enhance the reaction reversibility. This paper mainly reviews the research progress of tin dioxide based anode materials based on the two aspects of nanosizing and preparing SnO2 based hybrids, including the hybrids with other metal oxides, the amorphous carbon, the carbon nanotubes and the graphene. Finally, we also discuss the existing issues and challenges in the development of SnO2-based anode materials for lithium ion batteries.

参考文献

[1] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
[2] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[3] Li Y, Song J, Yang J. A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 627-633.
[4] Chen J S, Lou X W D. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries[J]. Small, 2013, 9(11): 1877-1893.
[5] Chen J. Recent progress in advanced materials for lithium ion batteries[J]. Materials, 2013, 6(1): 156-183.
[6] Xiao G, Wang Y, Ning J, et al. Recent advances in IV-VI semiconductor nanocrystals: synthesis, mechanism, and applications[J]. RSC Advances, 2013, 3(22): 8104-8130.
[7] Srinivasan N R, Mitra S, Bandyopadhyaya R. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications[J]. Physical Chemistry Chemical Physics, 2014, 16(14): 6630-6640.
[8] Yin L, Chai S, Wang F, et al. Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery[J]. Ceramics International, 2016, 42(8): 9433-9437.
[9] Wang J, Song W L, Wang Z, et al. Facile fabrication of binder-free metallic tin nanoparticle/carbon nanofiber hybrid electrodes for lithiumion batteries[J]. Electrochimica Acta, 2015, 153: 468-475.
[10] Ji X, Huang X, Liu J, et al. Carbon-coated SnO2 nanorod array for lithium-ion battery anode material[J]. Nanoscale Research Letters, 2010, 5 (3): 649-654.
[11] Xue X Y, Chen Z H, Xing L L, et al. SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes[J]. Chemical Communications, 2011, 47(18): 5205-5207.
[12] Thomas R, Rao G M. SnO2 nanowire anchored graphene nanosheet matrix for the superior performance of Li-ion thin film battery anode[J]. Journal of Materials Chemistry A, 2015, 3(1): 274-280.
[13] Zeng W, Zheng F, Li R, et al. Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity[J]. Nanoscale, 2012, 4(8): 2760-2765.
[14] Zhou D, Song W L, Fan L Z. Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21472-21478.
[15] Zhang L, Wu H B, Lou X D W. Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries[J]. Materials Horizons, 2014, 1(1): 133-138.
[16] Lin Y S, Duh J G, Hung M H. Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery[J]. The Journal of Physical Chemistry C, 2010, 114(30): 13136-13141.
[17] Wang J H. Synthesis of mesoporous SnO2 and its application in lithium-ion battery[J]. Acta Physico-Chimica Sinica, 2008, 24(4): 681-685.
[18] Deng D, Lee J Y. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage[J]. Chemistry of Materials, 2008, 20(5): 1841-1846.
[19] Lou X W, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced Materials, 2006, 18(17): 2325-2329.
[20] Jiang L Y, Wu X L, Guo Y G, et al. SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14213-14219.
[21] Yang H X, Qian J F, Chen Z X, et al. Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hHydrothermal environment[J]. The Journal of Physical Chemistry C, 2007, 111(38): 14067-14071.
[22] Wu H B, Chen J S, Lou X W, et al. Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties[J] The Journal of Physical Chemistry C, 2011, 115(50): 24605-24610.
[23] Yin X M, Li C C, Zhang M, et al. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(17): 8084-8088.
[24] Wang Y, Niu S, Lu S. Controlled-synthesis and lithium storage properties of SnO2 porous core-shell spheres and core-in-double-shell spheres[J]. Materials Letters, 2015, 157: 209-211.
[25] Ding S J, Chen J S, Qi G G, et al. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors[J]. Journal of the American Chemical Society, 2010, 133(1): 21-23.
[26] Kravchyk K, Protesescu L, Bodnarchuk M I, et al. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes[J]. Journal of the American Chemical Society, 2013, 135(11): 4199-4202.
[27] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery[J]. The Journal of Physical Chemistry B, 2008, 112(47): 14836-14842.
[28] Ding S, Lou X. SnO2 nanosheet hollow spheres with improved lithium storage capabilities[J]. Nanoscale, 2011, 3(9): 3586-3588.
[29] Yan W W, Fang M, Tan X L, et al. Template-free fabrication of SnO2 hollow spheres with photoluminescence from Sn[J]. Materials Letters, 2010, 64(19): 2033-2035.
[30] Wang H Z, Liang J B, Fan H, et al. Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres[J]. Journal of Solid State Chemistry, 2008, 181(1): 122-129.
[31] Yec C C, Zeng H C. Synthesis of complex nanomaterials via Ostwald ripening[J]. Journal of Materials Chemistry A, 2014, 2(14): 4843-4851.
[32] Lou X W, Wang Y, Yuan C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced Materials, 2006, 18(17): 2325-2329.
[33] Yin X M, Li C C, Zhang M, et al. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(17): 8084-8088.
[34] Zeng H C. Synthesis and self-assembly of complex hollow materials[J]. Journal of Materials Chemistry, 2011, 21(21): 7511-7526.
[35] Shi L, Bao K Y, Cao J, et al. Controlled fabrication of SnO2 solid and hollow nanocubes with a simple hydrothermal route[J]. Applied Physics Letters, 2008, 93(15): 152511.
[36] Hong K, Wang F F. Hydrothermal synthesis of hierarchical SnO2 microspheres for gas sensing and lithium-ion batteries applications: Fluoride-mediated formation of solid and hollow structures[J]. Journal of Materials Chemistry, 2012, 22(5): 2140-2148.
[37] Dou X, Sabba D, Mathews N, et al. Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells[J]. Chemistry of Materials, 2011, 23(17): 3938-3945.
[38] Li Z, Zhou Y, Yu T, et al. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell[J]. CrystEngComm, 2012, 14(20): 6462-6468.
[39] Sun P, You L, Sun Y, et al. Novel Zn-doped SnO2 hierarchical architectures: synthesis, characterization, and gas sensing properties[J]. CrystEngComm, 2012, 14(5): 1701-1708.
[40] Drake C, Seal S. Band gap energy modifications observed in trivalent In substituted nanocrystalline SnO2[J]. Applied Physics Letters, 2007, 90(23): 233117.
[41] Ara M, Wadumesthrige K, Meng T, et al. Effect of microstructure and Sn/C ratio in SnO2-graphene nanocomposites for lithium-ion battery performance[J]. RSC Advances, 2014, 4(39): 20540-20547.
[42] Chai X, Shi C, Liu E, et al. Hierarchically structured carbon-coated SnO2-Fe3O4 microparticles with enhanced lithium storage performance[J]. Applied Surface Science, 2016, 361: 1-10.
[43] Lian P, Wang J, Cai D, et al. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 116: 103-110.
[44] Xin X, Zhou X, Wu J, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano, 2012, 6(12): 11035-11043.
[45] Myung S T, Takahashi N, Komaba S, et al. Nanostructured TiO2 and its application in lithium-ion storage[J]. Advanced Functional Materials, 2011, 21(17): 3231-3241.
[46] Sun P, Sun L Y Y. Novel Zn-doped SnO2 hierarchical architectures: synthesis, characterization, and gas sensing properties[J]. CrystEngComm, 2012, 14(5): 1701-1708.
[47] Ding S, Chen J S, Qi G, et al. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors[J]. Journal of the American Chemical Society, 2010, 133(1): 21-23.
[48] Chen J S, Archer L A, Lou X W D. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 9912-9924.
[49] Wang Z, Luan D, Boey F Y C, et al. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability[J]. Journal of the American Chemical Society, 2011, 133(13): 4738-4741.
[50] Wang C, Zhou Y, Ge M, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity[J]. Journal of the American Chemical Society, 2009, 132(1): 46-47.
[51] Li Z, Zhou Y, Yu T, et al. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell[J]. CrystEngComm, 2012, 14(20): 6462-6468.
[52] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.
[53] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
[54] Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195): 638-641.
[55] Han X, Jin M, Xie S, et al. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties[J]. Angewandte Chemie, 2009, 121(48): 9344-9347.
[56] Chen X, Liu L, Peter Y Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750.
[57] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601): 2176-2179.
[58] Ariga K, Ji Q, McShane M J, et al. Inorganic nanoarchitectonics for biological applications[J]. Chemistry of Materials, 2011, 24(5): 728-737.
[59] Drake C, Seal S. Band gap energy modifications observed in trivalent In substituted nanocrystalline SnO2[J]. Applied Physics Letters, 2007, 90(23): 233117.
[60] Dou X, Sabba D, Mathews N. Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells[J]. Chemistry of Materials, 2011, 23 (17): 3938-3945.
[61] Wang H, Xi L, Tucek J, et al. Hierarchical assembly of Ti(IV)/Sn(II) co-doped SnO2 nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties[J]. Nanoscale, 2013, 5(19): 9101-9109.
[62] Han S, Jang B, Kim T, et al. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes[J]. Advanced Functional Materials, 2005, 15(11): 1845-1850.
[63] Lou X W, Wang Y, Yuan C L, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Advanced Materials, 2006, 18(17): 2325-2329.
[64] Yang H G, Zeng H C. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites[J]. Angewandte Chemie, 2004, 116(44): 6056-6059.
[65] Liu R, Su W, He P, et al. Synthesis of SnO2/Sn hybrid hollow spheres as high performance anode materials for lithium ion battery[J]. Journal of Alloys and Compounds, 2016, 688: 908-913.
[66] Zhang D F, Sun L D, Yin J L, et al. Low-temperature fabrication of highly crystalline SnO2 nanorods[J]. Advanced Materials, 2003, 15(12): 1022-1025.
[67] Maiti A, Rodriguez J A, Law M, et al. SnO2 nanoribbons as NO2 sensors: insights from first principles calculations[J]. Nano Letters, 2003, 3 (8): 1025-1028.
[68] Göpel W, Schierbaum K D. SnO2 sensors: current status and future prospects[J]. Sensors and Actuators B: Chemical, 1995, 26(1-3): 1-12.
[69] Xu J Q, Wang D, Qin L P, et al. SnO2 nanorods and hollow spheres: Controlled synthesis and gas sensing properties[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 490-495.
[70] Prasittichai C, Hupp J T. Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: significant improvements in photovoltage via Al2O3 atomic layer deposition[J]. The Journal of Physical Chemistry Letters, 2010, 1(10): 1611-1615.
[71] Snaith H J, Stavrinadis A, Docampo P, et al. Lead-sulphide quantumdot sensitization of tin oxide based hybrid solar cells[J]. Solar Energy, 2011, 85(6): 1283-1290.
[72] Wada T, Ichitsubo T, Yubuta K, et al. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process[J]. Nano Letters, 2014, 14(8): 4505-4510.
[73] Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials, 2006, 5(7): 567-573.
[74] Guo Q, Sun Z, Gao M. Porous V2O5-SnO2/CNTs composites as high performance cathode materials for lithium-ion batteries[J]. Journal of Energy Chemistry, 2013, 22(2): 347-355.
[75] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery[J]. The Journal of Physical Chemistry B, 2008, 112(47): 14836-14842.
[76] Haruyama J, Sodeyama K, Han L. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255.
[77] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[78] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[79] Yue H, Wang S, Yang Z, et al. Ultra-thick porous films of grapheneencapsulated silicon nanoparticles as flexible anodes for lithium ion batteries[J]. Electrochimica Acta, 2015, 174: 688-695.
[80] Liu Y, Liu P, Wu D. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage[J]. Chemistry-A European Journal, 2015, 21(14): 5617-5622.
[81] Li Y, Zhu S, Liu Q, et al. Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery[J]. Journal of Materials Chemistry, 2012, 22(6): 2766-2773.
[82] Wang D, Li X, Wang J, et al. Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116(42): 22149-22156.
[83] Zhang X, Zhu H, Guo Z. Design and preparation of CNT@SnO2 coreshell composites with thin shell and its application for ethanol oxidation[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8841-8847.
[84] Ma C, Weimin Z. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ionbatteries[J]. Nanoscale, 2016, 8(7): 4121-4126.
[85] Shuai Chen Y, Yi X, Zhou Y. Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability[J]. Journal Materials Chemistry A, 2014, 2 (37):15582-15589.
[86] Zhang L, Jiang L, Yan H. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(26): 5462-5467.
[87] Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACS Nano, 2009, 3 (4): 907-914.
[88] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282.
[89] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.
[90] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Letters, 2008, 9(1): 72-75.
[91] Wang X, Tabakman S M, Dai H. Atomic layer deposition of metal oxides on pristine and functionalized graphene[J]. Journal of the American Chemical Society, 2008, 130(26): 8152-8153.
[92] Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UVassisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2(7): 1487-1491.
[93] Chen Y, Song B, Chen R M, et al. A study of the superior electrochemical performance of 3 nm SnO2 nanoparticles supported by graphene[J]. Journal of Materials Chemistry A, 2014, 2(16): 5688-5695.
[94] Liu X, Sun Q. An alumina stabilized graphene oxide wrapped SnO2 hollow sphere LIB anode with improved lithium storage[J]. RSC Advances, 2015, 5(122): 100783-100789.
[95] Bhaskar A, Deepa M. Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries[J]. Nanoscale, 2014, 6(18): 10762-10771.
[96] Liang J, Yu X Y, Zhou H, et al. Bowl-like SnO2@ carbon hollow particles as an advanced anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(47): 12803-12807.
[97] Zhu Z, Wang S, Du J, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithiumion batteries[J]. Nano Letters, 2013, 14(1): 153-157.
[98] Dong Y, Zhao Z, Wang Z, et al. Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2444-2451.
[99] Li Y, Meng Q, Ma J, et al. Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11146-11154.
[100] Wu P, Wang H, Tang Y W, et al. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: In situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities[J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3546-3552.
[101] Zhu J, Zhang G H. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries[J]. Nano Energy, 2014, 3: 80-87.
文章导航

/