研究论文

高密度活性破片碰撞双层靶毁伤效应

  • 肖艳文 ,
  • 徐峰悦 ,
  • 余庆波 ,
  • 郑元枫 ,
  • 王海福
展开
  • 北京理工大学爆炸科学与技术国家重点实验室, 北京 100081
肖艳文,博士研究生,研究方向为高效毁伤弹药技术,电子信箱:ieeeq-1225@163.com。

收稿日期: 2016-03-25

  修回日期: 2016-09-10

  网络出版日期: 2017-05-25

Damage of double-spaced plates by reactive material fragment impact

  • XIAO Yanwen ,
  • XU Fengyue ,
  • YU Qingbo ,
  • ZHENG Yuanfeng ,
  • WANG Haifu
Expand
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Received date: 2016-03-25

  Revised date: 2016-09-10

  Online published: 2017-05-25

摘要

采用弹道碰撞实验,对高密度冷压成型和烧结硬化PTFE/Al/W活性破片正碰撞双层间隔铝板毁伤效应问题进行研究。实验结果表明,在高速碰撞条件下,活性破片对前靶的作用主要体现为动能贯穿破坏,与前靶相比,后靶毁伤更为严重,表现为更大的穿孔尺寸和毁伤面积,并伴随有显著的隆起及裂纹等结构破坏。引入裂纹扩展理论,分析了碰撞速度及靶板厚度对活性破片动能侵彻和爆炸作用联合毁伤效应的影响,从机理上揭示了后靶结构毁伤行为和效应。

本文引用格式

肖艳文 , 徐峰悦 , 余庆波 , 郑元枫 , 王海福 . 高密度活性破片碰撞双层靶毁伤效应[J]. 科技导报, 2017 , 35(10) : 99 -103 . DOI: 10.3981/j.issn.1000-7857.2017.10.014

Abstract

The ballistic impact experiments are conducted to investigate the damage of double-spaced aluminum plates impacted by the pressed and sintered PTFE/Al/W reactive material projectile. The experimental results show that a typical KE perforated hole on the front plate is produced by the reactive material projectile impact, whereas the dramatically structural damage with significant deflections and cracks is found in the rear plate, with larger ruptured holes and damage areas, as compared with the front plate. Moreover, the influences of the impact velocity and the plate thickness on the damage of the rear plate are analyzed by using the crack growth theory. The structural damage mechanisms of the rear plate are discussed.

参考文献

[1] Nable J, Mercado A, and Sherman A. Novel energetic composite materi-als[J]. MRS Proceedings, 2005, 896, 0896-H01-03.
[2] Lee R J, Willis M J, Carney J R, et al. Reactive materials studies[C]//Shock Compression of Condensed Matter. Los Angeles:American Physi-cal Society, 2005:92-96.
[3] Wang H F, Zheng Y F, Yu Q B, et al. Initiation behavior of covered ex-plosive subjected to reactive fragment[J]. Journal of Beijing Institute of Technology, 2012, 21(2):143-149.
[4] Ames R G. Energy release characteristics of impact-initiated energetic materials[C]//Proceedings of Materials Research Society Symposium. Boston:Materials Research Society, 2006:78-83.
[5] 王海福, 郑元枫, 余庆波, 等. 活性破片引燃航空煤油实验研究[J]. 兵工学报, 2012, 33(9):1148-1152. Wang Haifu, Zheng Yuanfeng, Yu Qingbo, et al. Experimental research on igniting the aiation kerosene by reactive fragment[J]. Acta Armamen-tarii, 2012, 33(9):1148-1152.
[6] Cai J, Walley S M, Hunt R J A. High-strain,high-strain-rate flow and failure in PTFE/Al/W granular compo-sites[J]. Materials Science and Engineering A, 2008(1-2):308-315.
[7] Ames R G. Vented chamber calorimetry for impact initiated energetic materials[R]. AIAA 2005-279. Reno, Nevada:AIAA, 2005.
[8] Wang H, Zheng Y, Yu Q, et al. Impact-induced initiation and energy release behavior of reactive materials[J]. Journal of Applied Physics, 2011, 110(7):074904.
[9] 李向东, 杜忠华. 目标易损性[M]. 北京:北京理工大学出版社, 2013, 191-195. Li xiangdong, Du zhonghua. Target vulnerability[M]. Beijing:Beijing In-stitute of Technology Press, 2013, 191-195.
[10] Lloyd R. Conventional warhead systems physics and engineering design[M]//Reston:American Institute of Aeronautics and Astronautics, Inc, 1998, 179.
[11] Rosenberg Z, Bless S J, Gallagher J P. A model for hydrodynamic ram failure based on fratrue mechanics analysis[J]. International Journal of Impact Engineering, 1987, 6(1):51-61.
[12] 郑元枫. 活性材料撞击起爆行为及毁伤增强效应研究[D]. 北京:北京理工大学, 2012. Zheng Yuanfeng. Research on enhanced lethality effects and mecha-nisms of reactive materials[D]. Beijing:Beijing Institute of Technology, 2012.
文章导航

/