专题论文

土壤重金属污染的4种植物修复技术

  • 李玉宝 ,
  • 夏锦梦 ,
  • 论东东
展开
  • 温州大学生命与环境科学学院, 温州 325000
李玉宝,副教授,研究方向为水污染控制工程,电子信箱:yubao@wzu.edu.cn;夏锦梦(共同第一作者),研究方向为水污染控制工程,电子信箱:15461372027@stu.wzu.edu.cn

收稿日期: 2017-05-15

  修回日期: 2017-05-25

  网络出版日期: 2017-06-14

基金资助

浙江省科技计划项目(2012C23023);温州市科技计划项目(S20150022)

Review of four phytoremediation techniques for soil polluted by heavy metals

  • LI Yubao ,
  • XIA Jinmeng ,
  • LUN Dongdong
Expand
  • College of Life and Environmental Sciences of Wenzhou University, Wenzhou 325000, China

Received date: 2017-05-15

  Revised date: 2017-05-25

  Online published: 2017-06-14

摘要

目前土壤受重金属污染的情况受到广泛关注,该状况在国内外都很严重。植物修复技术是新发展起来的一种利用自然生长植物或遗传工程培育植物来修复重金属土壤环境的技术,它是通过植物系统及根际微生物群落来移去、挥发或稳定土壤环境中的污染物。与传统的物理和化学修复方法相比,植物修复技术具有投资少、成本低、可盈利、对土壤环境扰动小等优点。本文主要介绍土壤重金属污染的4种植物修复技术,论述国内外重金属污染治理的现状,重点涉及植物提取和稳定2方面。超积累植物由于其生理特性适合规模性应用,而与微生物修复、动物修复等修复方式结合能更好地提高修复效果。

本文引用格式

李玉宝 , 夏锦梦 , 论东东 . 土壤重金属污染的4种植物修复技术[J]. 科技导报, 2017 , 35(11) : 47 -51 . DOI: 10.3981/j.issn.1000-7857.2017.11.006

Abstract

Heavy metals in soil stem from human activities which result in significantly high heavy metals contents in soil and lead to the phenomenon of ecological environment quality deterioration.Heavy metal contamination of soil is essentially an irreversible process.Many organic chemicals require a long time to degrade.Once contamination occurs it is difficult to recover by merely cutting off pollution sources.Therefore there have been a lot of soil treatment methods for heavy metals.Compared to physical and chemical remediation,phytoremediation has several advantages such as small investment,low cost,economical profit and less disturbance to the soil environment.This paper reviews four hytoremediation techniques for heavy metal contaminated soil remediation and describes both domestic and foreign heavy metal pollution control.Finally,the future development in this area is prospected.

参考文献

[1] 唐浩, 曹乃文. 浅谈我国土壤重金属污染现状及修复技术[J]. 安徽农学通报, 2017(7):103-105. Tang Hao, Cao Naiwen. A brief talk of China's pollution status and remediation technology of heavy metals[J]. Anhui Agricultural Science Bulletin, 2017(7):103-105.
[2] 白洁, 孙学凯, 王道涵, 等. 土壤重金属污染及植物修复技术综述[J]. 生态环境, 2005, 28(3):49-51.Bai Jie, Sun Xuekai, Wang Daohan, et al. The summarize of the contamination of heavy metals in soil and phytoremediation technology[J]. Ecology and Environment, 2005, 28(3):49-51.
[3] 刘小宁, 马剑英, 张慧文, 等. 植物修复技术在土壤重金属污染中应用的研究进展[J]. 中国沙漠, 2009, 29(5):860-865. Liu Xiaoning, Ma Jianying, Zhang Huiwen, et al. The research progress of phytoremediation technology in soil contaminated with heavy metals[J]. Journal of Desert Research, 2009, 29(5):860-865.
[4] 杨肖娥, 傅承新.东南景天Sedumalfredii-一种新的锌超积累植物[J]. 科学通报, 2002, 47(13):1003-1006. Yang Xiao'e, Fu Chengxin. Alfred Stocrop Sedumalfredii:A new hyperaccumulator plant fo Zn[J]. Chinese Science Bulletin, 2002, 47(13):1003-1006.
[5] 陈同斌, 韦朝阳, 黄泽春,等. 砷超富集植物蜈蚣草及对砷的富集特征[J]. 科学通报, 2002, 47(3):207-210. Chen Tongbin, Wei Chaoyang, Huang Zechun, et al. The hyperaccumulator plant of As ciliate desert-grass and its enrichment characteristic on As[J]. Chinese Science Bulletin, 2002, 47(3):207-210.
[6] 韦朝阳, 陈同斌, 黄泽春, 等. 大叶井口边草——一种新发现的富集砷的植物[J]. 生态学报, 2002, 22(5):777-778. Wei Chaoyang, Chen Tongbin, Huang Zechun, et al. Pteris cretica:A new hyperaccumulator plant of As[J]. Acta Ecologica Sinica, 2002, 22(5):777-778.
[7] 薛生国, 陈英旭, 林琦, 等. 中国首次发现的锰超积累植物-商陆[J]. 生态学报, 2003, 23(5):935-937. Xue Shengguo, Chen Yingxu, Lin Qi, et al. The first discovery of hyperaccumulator plant on Mn-Pokeberry[J]. Acta Ecologica Sinica, 2003, 23(5):935-937.
[8] 刘威, 束文圣, 蓝崇钰. 宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J]. 科学通报, 2003, 48(19):2046-2049. Liu Wei, Su Wensheng, Lan Chongyu. Viola baoshanensis:A new hyperaccumulator plant of Cd[J]. Chinese Science Bulletin, 2003, 48(19):2046-2049.
[9] 中国科大发现一种新颖硒代胱氨酸积累植物[EB/OL]. (2013-06-28)[2017-05-23]. http://news.ustc.edu.cn/xwbl/201306/t20130628_153725.html. A novel accumulation of cystine cystine plants was discovered in USTC[EB/OL]. (2013-06-28)[2017-05-23]. http://news.ustc.edu.cn/xwbl/201306/t20130628_153725.html.
[10] Baker A J M, Mcgrath S P, Sidoli C, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J]. Resources Conservation & Recycling, 1994, 11(1-4):41-49.
[11] Ebbs S D, Kochain L V. Phytoextraction of zinc by oat(Avena Sativa), Barley(Hordeum, vulgare) and India mustard (Brassium junica)[J]. Encironmental Science Technology, 1998, 32(6):802-806.
[12] Blaylock M J, Salt D E, Dushenkow S. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Encironmental Science Tech-nology, 1997, 31(3):860-865.
[13] Antiochia R, Kochian L V. Ghezzi P, et al. The use id vetiver for remediation of heacy metal soil contamination[J]. Analytical and Bioanalytical Chemis-try, 2007, 388(4):947-956.
[14] 樊有赋, 陈晔, 詹寿发, 等. 超积累植物与重金属污染的植物修复技术[J]. 河北农业科学, 2007, 11(5):73-75. Fan Youfu, Chen Ye, Zhan Shoufa, et al. The phytoremediation technology of hyperaccumulator on heavy metals in soil[J]. Journal of Hebei Agricultural Sciences, 2007, 11(5):73-75.
[15] 郭志民, 陈志伟, 陈永宝. 应用GIS方法对土壤侵蚀潜在危险性进行评价及其时空分布特征研究[J]. 福建水土保持, 1999, 1(4):40-45. Guo Zhiminm, Chen Zhiwei, Chen Yongbao. The evaluation of potential risk of soil denudation and study of spatial and temporal distribution characteristic by method GIS[J]. Fujian Soil and Water Conservation, 1999, 1(4):40-45.
[16] 薛利红, 扬林章.遥感技术在我国土壤侵蚀中的研究进展[J].水土保持学报, 2004, 18(3):186-189. Xue Lihong, Yang Linzhang. The research progress of remote sensing technology in soil denudation in China[J]. Journal of Soil and Water Conservation, 2004, 18(3):186-189.
[17] 吴志强, 顾尚义, 李海英, 等. 重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理, 2007, 32(3):67-75. Wu Zhiqiang, Gu Shangyi, Li Haiying, et al. The phytoremediation of heavy metals in soil and the research progress of hyperaccumulator[J]. Environmental Science and Management, 2007, 32(3):67-75.
[18] Chaney R L. Plant uptake of inorganic waste constituents[M]//Parr J F. Land Treatment of Hazardous Wastes. New Jersey, USA:Noyes Data Corporation, 1983:50-76.
[19] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 1977, 7(77):49-57.
[20] Li Y, Chaney R L, Brewer E P, et al. Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils[J]. Environmental Science Technology, 2003, 37(7):1463-1468.
[21] Rugh C L, Wilde H D, Stack N M, et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(8):3182-3187.
[22] Santibanez C, Verdugo C, Ginocchio R, et al. Phytostabilization of copper mine tailings with biosolids:Implications for metal uptake and productivity of Lolium perenne[J]. Science of the Total Environment, 2008, 395(1):1-10.
[23] 陈兴兰, 杨成波. 土壤重金属污染、生态效应及植物修复技术[J]. 农业环境与发展, 2010, 27(3):58-62. Chen Xinglan, Yang Chengbo. Heavy metals contamination, ecological efficiency and phytoremediation technology in soil[J]. Agro-Environment and Development, 2010, 27(3):58-62.
[24] Hansen D, Duka P J, Zayed A, et al. Selenium removal by constructed wetlands:Role of biological volatilization[J]. Environmental Science and Technolo-gy, 1998, 32(5):591-597.
文章导航

/