[1] 唐浩, 曹乃文. 浅谈我国土壤重金属污染现状及修复技术[J]. 安徽农学通报, 2017(7):103-105. Tang Hao, Cao Naiwen. A brief talk of China's pollution status and remediation technology of heavy metals[J]. Anhui Agricultural Science Bulletin, 2017(7):103-105.
[2] 白洁, 孙学凯, 王道涵, 等. 土壤重金属污染及植物修复技术综述[J]. 生态环境, 2005, 28(3):49-51.Bai Jie, Sun Xuekai, Wang Daohan, et al. The summarize of the contamination of heavy metals in soil and phytoremediation technology[J]. Ecology and Environment, 2005, 28(3):49-51.
[3] 刘小宁, 马剑英, 张慧文, 等. 植物修复技术在土壤重金属污染中应用的研究进展[J]. 中国沙漠, 2009, 29(5):860-865. Liu Xiaoning, Ma Jianying, Zhang Huiwen, et al. The research progress of phytoremediation technology in soil contaminated with heavy metals[J]. Journal of Desert Research, 2009, 29(5):860-865.
[4] 杨肖娥, 傅承新.东南景天Sedumalfredii-一种新的锌超积累植物[J]. 科学通报, 2002, 47(13):1003-1006. Yang Xiao'e, Fu Chengxin. Alfred Stocrop Sedumalfredii:A new hyperaccumulator plant fo Zn[J]. Chinese Science Bulletin, 2002, 47(13):1003-1006.
[5] 陈同斌, 韦朝阳, 黄泽春,等. 砷超富集植物蜈蚣草及对砷的富集特征[J]. 科学通报, 2002, 47(3):207-210. Chen Tongbin, Wei Chaoyang, Huang Zechun, et al. The hyperaccumulator plant of As ciliate desert-grass and its enrichment characteristic on As[J]. Chinese Science Bulletin, 2002, 47(3):207-210.
[6] 韦朝阳, 陈同斌, 黄泽春, 等. 大叶井口边草——一种新发现的富集砷的植物[J]. 生态学报, 2002, 22(5):777-778. Wei Chaoyang, Chen Tongbin, Huang Zechun, et al. Pteris cretica:A new hyperaccumulator plant of As[J]. Acta Ecologica Sinica, 2002, 22(5):777-778.
[7] 薛生国, 陈英旭, 林琦, 等. 中国首次发现的锰超积累植物-商陆[J]. 生态学报, 2003, 23(5):935-937. Xue Shengguo, Chen Yingxu, Lin Qi, et al. The first discovery of hyperaccumulator plant on Mn-Pokeberry[J]. Acta Ecologica Sinica, 2003, 23(5):935-937.
[8] 刘威, 束文圣, 蓝崇钰. 宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J]. 科学通报, 2003, 48(19):2046-2049. Liu Wei, Su Wensheng, Lan Chongyu. Viola baoshanensis:A new hyperaccumulator plant of Cd[J]. Chinese Science Bulletin, 2003, 48(19):2046-2049.
[9] 中国科大发现一种新颖硒代胱氨酸积累植物[EB/OL]. (2013-06-28)[2017-05-23]. http://news.ustc.edu.cn/xwbl/201306/t20130628_153725.html. A novel accumulation of cystine cystine plants was discovered in USTC[EB/OL]. (2013-06-28)[2017-05-23]. http://news.ustc.edu.cn/xwbl/201306/t20130628_153725.html.
[10] Baker A J M, Mcgrath S P, Sidoli C, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J]. Resources Conservation & Recycling, 1994, 11(1-4):41-49.
[11] Ebbs S D, Kochain L V. Phytoextraction of zinc by oat(Avena Sativa), Barley(Hordeum, vulgare) and India mustard (Brassium junica)[J]. Encironmental Science Technology, 1998, 32(6):802-806.
[12] Blaylock M J, Salt D E, Dushenkow S. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Encironmental Science Tech-nology, 1997, 31(3):860-865.
[13] Antiochia R, Kochian L V. Ghezzi P, et al. The use id vetiver for remediation of heacy metal soil contamination[J]. Analytical and Bioanalytical Chemis-try, 2007, 388(4):947-956.
[14] 樊有赋, 陈晔, 詹寿发, 等. 超积累植物与重金属污染的植物修复技术[J]. 河北农业科学, 2007, 11(5):73-75. Fan Youfu, Chen Ye, Zhan Shoufa, et al. The phytoremediation technology of hyperaccumulator on heavy metals in soil[J]. Journal of Hebei Agricultural Sciences, 2007, 11(5):73-75.
[15] 郭志民, 陈志伟, 陈永宝. 应用GIS方法对土壤侵蚀潜在危险性进行评价及其时空分布特征研究[J]. 福建水土保持, 1999, 1(4):40-45. Guo Zhiminm, Chen Zhiwei, Chen Yongbao. The evaluation of potential risk of soil denudation and study of spatial and temporal distribution characteristic by method GIS[J]. Fujian Soil and Water Conservation, 1999, 1(4):40-45.
[16] 薛利红, 扬林章.遥感技术在我国土壤侵蚀中的研究进展[J].水土保持学报, 2004, 18(3):186-189. Xue Lihong, Yang Linzhang. The research progress of remote sensing technology in soil denudation in China[J]. Journal of Soil and Water Conservation, 2004, 18(3):186-189.
[17] 吴志强, 顾尚义, 李海英, 等. 重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理, 2007, 32(3):67-75. Wu Zhiqiang, Gu Shangyi, Li Haiying, et al. The phytoremediation of heavy metals in soil and the research progress of hyperaccumulator[J]. Environmental Science and Management, 2007, 32(3):67-75.
[18] Chaney R L. Plant uptake of inorganic waste constituents[M]//Parr J F. Land Treatment of Hazardous Wastes. New Jersey, USA:Noyes Data Corporation, 1983:50-76.
[19] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 1977, 7(77):49-57.
[20] Li Y, Chaney R L, Brewer E P, et al. Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils[J]. Environmental Science Technology, 2003, 37(7):1463-1468.
[21] Rugh C L, Wilde H D, Stack N M, et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(8):3182-3187.
[22] Santibanez C, Verdugo C, Ginocchio R, et al. Phytostabilization of copper mine tailings with biosolids:Implications for metal uptake and productivity of Lolium perenne[J]. Science of the Total Environment, 2008, 395(1):1-10.
[23] 陈兴兰, 杨成波. 土壤重金属污染、生态效应及植物修复技术[J]. 农业环境与发展, 2010, 27(3):58-62. Chen Xinglan, Yang Chengbo. Heavy metals contamination, ecological efficiency and phytoremediation technology in soil[J]. Agro-Environment and Development, 2010, 27(3):58-62.
[24] Hansen D, Duka P J, Zayed A, et al. Selenium removal by constructed wetlands:Role of biological volatilization[J]. Environmental Science and Technolo-gy, 1998, 32(5):591-597.