[1] Eagan J M, Xu J, Di Girolamo R, et al. Combining polyethylene and polypropylene:Enhanced performance with PE/iPP multiblock polymers[J]. Science, 2017, 355(6327):814-816.
[2] Lamberti G. Flow induced crystallisation of polymers[J]. Chemical Society Reviews, 2014, 43(7):2240-2252.
[3] Yang Z, Mai K. Crystallization and melting behavior of β-nucleated isotactic polypropylene/polyamide 6 blends with maleic anhydride grafted polyethyl-ene-vinyl acetate as a compatibilizer[J]. Thermochimica Acta, 2010, 511(1):152-158.
[4] Wang Y, Liu P, Lu Y, et al. Mechanism of polymorph selection during crystallization of random butene-1/ethylene copolymer[J]. Chinese Journal of Poly-mer Science, 2016, 34(8):1014-1020.
[5] Qiao Y, Wang Q, Men Y. Kinetics of Nucleation and Growth of Form Ⅱ to I Polymorphic Transition in Polybutene-1 as Revealed by Stepwise Annealing[J]. Macromolecules, 2016, 49(14):5126-5136.
[6] Wang Y, Jiang Z, Wu Z, et al. Tensile deformation of polybutene-1 with stable form I at elevated temperature[J]. Macromolecules, 2012, 46(2):518-522.
[7] Wang Y, Jiang Z, Fu L, et al. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers[J]. PloS one, 2014, 9(5):e97234.
[8] Qazi T H, Rai R, Boccaccini A R. Tissue engineering of electrically responsive tissues using polyaniline based polymers:A review[J]. Biomaterials, 2014, 35(33):9068.
[9] Nair L S, Laurencin C T. Biodegradable polymers as biomaterials[J]. Progress in polymer science, 2007, 32(8):762-798.
[10] 梁慧刚, 黄可. 生物医用高分子材料的发展现状和趋势[J]. 新材料产业, 2016(2):12-15. Liang Huigang, Huang Ke. Current status and trends of biomedical polymer materials[J]. Advanced Materials Industry, 2016(2):12-15.
[11] Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles:Mechanisms of controlling drug release[J]. Chemical Reviews, 2016, 116(4):2602-2663.
[12] 奚廷斐. 生物医用材料现状和发展趋势[J]. 中国医疗器械信息, 2006, 12(5):1-4. Xi Tingfei. The current situation and developmental trend of biomedical materials[J]. China Medical Devices Information, 2006, 12(5):1-4.
[13] Campoccia D, Montanaro L, Arciola C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34):8533-8554.
[14] Hasan J, Crawford R J, Ivanova E P. Antibacterial surfaces:the quest for a new generation of biomaterials[J]. Trends in biotechnology, 2013, 31(5):295-304.
[15] Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections[J]. FEMS Immunology & Medical Microbiology, 2010, 59(3):227-238.
[16] 文细毛, 任南, 吴安华, 等. 全国医院感染监测网2012年综合ICU医院感染现患率调查监测报告[J]. 中国感染控制杂志, 2014, 13(8):458-462. Wen Ximao, Ren Nan, Wu Anhua, et al. Survey on healthcare-associated infection in general intensive care units re-ported to China HAI Surveillance Network[J]. Chinese Journal of Infection Control, 2014, 13(8):458-462.
[17] Noimark S, Dunnill C W, Wilson M, et al. The role of surfaces in catheter-associated infections[J]. Chemical Society Reviews, 2009, 38(12):3435-3448.
[18] Nicolle L E. Urinary catheter-associated infections[J]. Infectious Disease Clinics of North America, 2012, 26(1):13-27.
[19] Borges A, Abreu A C, Dias C, et al. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including bio-films[J]. Molecules, 2016, 21(7):877.
[20] Davies D. Understanding biofilm resistance to antibacterial agents[J]. Nature Reviews Drug Discovery, 2003, 2(2):114-122.
[21] Arciola C R, Campoccia D, Speziale P, et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implica-tions for biofilm-resistant materials[J]. Biomaterials, 2012, 33(26):5967-5982.
[22] Uckay I, Hoffmeyer P, Lew D, et al. Prevention of surgical site infections in orthopaedic surgery and bone trauma:State-of-the-art update[J]. Journal of Hospital Infection, 2013, 84(1):5-12.
[23] Arciola C R, Baldassarri L, Campoccia D, et al. Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of En-terococcus faecalis from orthopaedic implant infections[J]. Biomaterials, 2008, 29(5):580-586.
[24] Crick C R, Ismail S, Pratten J, et al. An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition[J]. Thin Solid Films, 2011, 519(11):3722-3727.
[25] Smith R S, Zhang Z, Bouchard M, et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and mi-crobial attachment[J]. Science Translational Medicine, 2012, 4(153):153ra132-153ra132.
[26] Flores-Mireles A L, Walker J N, Bauman T M, et al. Fibrinogen release and deposition on urinary catheters placed during urological procedures[J]. The Journal of Urology, 2016, 196(2):416-421.
[27] Yang C, Ding X, Ono R J, et al. Brush-Like Polycarbonates Containing Dopamine, Cations, and PEG Providing a Broad-Spectrum, Antibacterial, and Antifouling Surface via One-Step Coating[J]. Advanced Materials, 2014, 26(43):7346-7351.
[28] Brown E D, Wright G D. Antibacterial drug discovery in the resistance era[J]. Nature, 2016, 529(7586):336-343.
[29] Dirlam P T, Glass R S, Char K, et al. The use of polymers in Li-S batteries:A review[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2017, 55(10):1635-1668.
[30] Raza R, Akram N, Javed M S, et al. Fuel cell technology for sustainable development in Pakistan-An over-view[J]. Renewable and Sustainable Energy Reviews, 2016, 53:450-461.
[31] Li G, Zhu R, Yang Y. Polymer solar cells[J]. Nature Photonics, 2012, 6(3):153-161.
[32] Li Y. Molecular design of photovoltaic materials for polymer solar cells:Toward suitable electronic energy levels and broad absorption[J]. Accounts of Chemical Research, 2012, 45(5):723-733.
[33] Chen J, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices[J]. Accounts of Chemical Research, 2009, 42(11):1709-1718.
[34] He Y, Li Y. Fullerene derivative acceptors for high performance polymer solar cells[J]. Physical Chemistry Chemical Physics, 2011, 13(6):1970-1983.
[35] Ye L, Zhang S, Huo L, et al. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene[J]. Accounts of Chemical Research, 2014, 47(5):1595-1603.
[36] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nature Photonics, 2012, 6(9):591-595.
[37] Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27(7):1170-1174.
[38] Lin Y, Zhan X. Non-fullerene acceptors for organic photovoltaics:an emerging horizon[J]. Materials Horizons, 2014, 1(5):470-488.
[39] Gao L, Zhang Z G, Xue L, et al. All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conver-sion Efficiency of 8.27%[J]. Advanced Materials, 2015.
[40] Dou C, Ding Z, Zhang Z, et al. Developing Conjugated Polymers with High Electron Affinity by Replacing a C C Unit with a B← N Unit[J]. Angewandte Chemie, 2015, 127(12):3719-3723.