研究论文

青藏高原盐湖微型和微微型真核浮游生物

  • 王家利 ,
  • 储立民
展开
  • 1. 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038;
    2. 山东江河湿地研究院, 莱芜 271100
王家利,讲师,研究方向为生态学,E-mail:jialiwang76@163.com

收稿日期: 2016-11-15

  修回日期: 2016-12-07

  网络出版日期: 2017-07-03

基金资助

流域水循环模拟与调控国家重点实验室自主研究课题(2016TS01)

Eukaryotic pico-and nano-plankton community in Qinghai-Tibetan Plateau saline lakes

  • WANG Jiali ,
  • CHU Limin
Expand
  • 1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
    2. Institute of Shandong River Wetlands, Laiwu 271100, China

Received date: 2016-11-15

  Revised date: 2016-12-07

  Online published: 2017-07-03

摘要

微型与微微型真核浮游生物通常是指粒径在0.2~20 μm之间的真核浮游生物。高原盐湖中微型与微微型真核生物具有丰富的遗传多样性,近年来对高原盐湖中微型与微微型真核生物的研究日渐增多。本文综述了国内外微型与微微型真核浮游生物主要类群的分类学和多样性研究进展,论述了青藏高原柴达木盆地盐湖微型与微微型真核浮游生物的群落结构、在不同盐湖中的分布差异及分子生物学研究方法自身的局限。最后对中国未来加强盐湖中微型与微微型真核浮游生物研究提出了4个建议:加强盐湖微型与微微型真核浮游生物遗传多样性研究,开展盐湖微型与微微型真核浮游生物的纯培养技术研究,充分挖掘盐湖微型与微微型真核浮游生物在生物进化研究中的潜力,以及推动盐湖微型与微微型真核浮游生物功能研究。

本文引用格式

王家利 , 储立民 . 青藏高原盐湖微型和微微型真核浮游生物[J]. 科技导报, 2017 , 35(12) : 32 -38 . DOI: 10.3981/j.issn.1000-7857.2017.12.004

Abstract

The Saline Lake storage of the rich mineral resources and biological resources provides an optimum contribution to the economy and the development of industry and agriculture. The eukaryotic pico-and nano-plankton is usually defined as a plankton in the range from 0.2 to 3 μm diameter. The high genetic diversity of the eukaryotic pico-and nano-plankton communities is observed in the HighMountain saline lakes. In recent years, the eukaryotic pico-and nano-plankton attracts attentions of many researchers and many useful observations were made in the literature. The present paper summarizes the recent research progresses in systematic and biodiversity of the eukaryotic pico-and nano-plankton, the composition and the distribution of the inhabiting saline lakes in the Qaidam Basin of the QinghaiTibetan Plateau. And it is pointed out that each kind of molecular biology research techniques has limitations. Some suggestions are made about the studies of the eukaryotic pico-and nano-plankton inhabiting saline lakes, including how to promote the research of genetic diversity of eukaryotic pico-and nano-plankton inhabiting saline lakes, how to carry out the research work based on the microbial cultivation and the pure culture isolation for eukaryotic pico-and nano-plankton inhabiting saline lakes, how to tap the potential of research for the evolutionary studies based on the eukaryotic pico-and nano-plankton inhabiting saline lakes, and how to promote the studies of the biological functions of the eukaryotic pico-and nano-plankton inhabiting saline lakes.

参考文献

[1] Zheng M P. Salinology:Research and prospects[J]. Geological Review, 2006, 52(6):737-746.
[2] Williams W D. Microbiology and biogeochemistry of hypersalin environ-ments[J]. International Journal of Salt Lake Research, 1999, 8(2):177-178.
[3] Ventosa A, de la Haba R R, Sánchez-Porro C, et al. Microbial diversi-ty of hypersaline environments:A metagenomic approach[J]. Current Opinion in Microbiology, 2015, 25(5):80-87.
[4] Kong F J, Zheng M P, Jia Q X, et al. Retrospect and prospect of study on saline lake biology in China[J]. Mineral Deposits, 2002, (Suppl 1):18-19.
[5] Kong F J, Zheng M P. Research progress in saline lake biology:A re-view of the 2nd Conference of "saline lake biology and its relationship with petroleum generation"[J]. Acta Geoscientia Sinica, 2007, 28(6):603-608.
[6] Zhao W. The current research status and prospective of organisms in Chinese saline lakes[J]. Journal of Dalian Fisheries University, 2009, 24(5):1440-1443.
[7] Lane C E. Biodiversity:More surprises from the smallest marine eukary-otes[J]. Current Biology, 2017, 27(3):R121-R122.
[8] Wang J L, Wang F, Chu L M, et al. High genetic diversity and novelty in eukaryotic plankton assemblages inhabiting saline lakes in the Qaid-am Basin[J]. Plos One, 2014, 9(11):e112812.
[9] Heidelberg K B, Nelson W C, Holm J B, et al. Characterization of eu-karyotic microbial diversity in hypersaline Lake Tyrrell, Australia[J]. Frontiers in Microbiology, 2013, 4(115):1-14.
[10] Schapira M, Buscot M J, Pollet T, et al. Distribution of picophytoplank-ton communities from brackish to hypersaline waters in a South Aus-tralian coastal lagoon[J]. Aquatic Biosystems, 2010, 6(1):2.
[11] Thyssen M, Beker B, Ediger D, et al. Phytoplankton distribution dur-ing two contrasted summers in a Mediterranean harbour:Combining automated submersible flow cytometry with conventional techniques[J]. Environmental Monitoring and Assessment, 2011, 173(1):1-16.
[12] Sieburth J M, Smetacek V, Lenz J. Pelagic ecosystem structure:Het-erotrophic compartments of the plankton and their relationship to plankton size fractions[J]. Limnology and Oceanography, 1978, 23(6):1256-1263.
[13] Keresztes Z G, Felföldi T, et al. First record of picophytoplankton di-versity in Central European hypersaline lakes[J]. Extremophiles, 2012, 16(5):759-769.
[14] Jiao N. Marine microbial ecology[M]. Beijing:Modern Education Press, 2009.
[15] Dai C J, He J F, Wang G Z, et al. A review of ecological research on mixotrophic plankton ecological science[J]. Acta Ecologica Sinica, 2005, 25(9):2400-2402.
[16] Huss V A R, Ciniglia C, Cennamo P, et al. Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH environ-ments (pH<3.0)[J]. BMC Evolutionary Biology, 2002, 2(1):1-9.
[17] Kong F J, Jia Q X, Jia E, et al. Characterization of a eukaryotic pico-plankton alga, strain DGN-Z1, isolated from a soda lake in inner Mon-golia, China[J]. Natural Resources & Environmental Issues, 2009(1):185-189.
[18] Somogyi B, Vörös L, Pálffy K, et al. Picophytoplankton predominance in hypersaline lakes (Transylvanian Basin, Romania)[J]. Extremo-philes, 2014, 18(6):1075-1084.
[19] Gunde-Cimerman N, Zalar P, de Hoog G S, et al. Hypersaline water in salterns dnatural ecological niches for halophilic black yeasts[J]. FEMS Microbiology Ecology, 2000, 32(3):235-240.
[20] Orsi W, Charvet S, Vd'Acny P, et al. Prevalence of partnerships be-tween bacteria and ciliates in oxygen-depleted marine water columns[J]. Frontiers in Microbiology, 2012, 3(3):341.
[21] Kong F, Zheng M. Retrospect and prospect of study on dunaliella in salt lakes[J]. Journal of Salt & Chemical Industry, 2007, 36(5):27-33.
[22] Triadó-Margarit X, Casamayor E O. High genetic diversity and novel-ty in planktonic protists inhabiting inland and coastal high salinity wa-ter bodies[J]. FEMS Microbiology Ecology, 2013, 85(1):27-36.
[23] Casamayor E O, Triadó-Margarit X, Castañeda C. Microbial biodiver-sity in saline shallow lakes of the Monegros Desert, Spain[J]. FEMS Microbiology Ecology, 2013, 85(3):503-518.
[24] Wu Q L, Chatzinotas A, Wang J, et al. Genetic diversity of eukaryotic plankton assemblages in Eastern Tibetan lakes differing by their salin-ity and altitude[J]. Microbial Ecology, 2009, 58(3):569-581.
[25] Wang M, Bai X G, Liang Y T, et al. Summer distribution of picophyto-plankton in the North Yellow Sea[J]. Journal of Plant Ecology, 2008, 32(5):1184-1139
[26] Somogyi B, Felföldi T, Vanyovszki J, et al. Winter bloom of picoeu-karyotes in Hungarian shallow turbid soda pans and the role of light and temperature[J]. Aquatic Ecology, 2009, 43(3):735-744.
[27] Felföldi T, Somogyi B, Márialigeti K, et al. Notes on the biogeography of non-marine planktonic picocyanobacteria:Re-evaluating novelty[J]. Journal of Plankton Research, 2011, 33(10):1622-1626.
[28] Dong X Z. Archaea:The transition from prokaryotes to eukaryotes[J]. Microbiology China, 1999(6):426-430.
文章导航

/