专题论文

湿式氧化法处理放射性废离子交换树脂研究进展

  • 徐乐瑾 ,
  • 隋增光
展开
  • 华中科技大学能源与动力工程学院核工程与核技术系, 武汉 430074
徐乐瑾,副教授,研究方向为放射性废物处理及水处理技术,电子信箱:xulejin@hust.edu.cn

收稿日期: 2017-03-25

  修回日期: 2017-06-12

  网络出版日期: 2017-07-17

基金资助

国家自然科学基金项目(51348008);中国博士后科学基金资助项目(2012M520302,2013T60131)

Recent advances in treatment of spent radioactive ion exchange resins by wet air oxidation

  • XU Lejin ,
  • SUI Zengguang
Expand
  • Nuclear Engineering and Technology Department, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2017-03-25

  Revised date: 2017-06-12

  Online published: 2017-07-17

摘要

随着世界核电事业的发展,核设施产生的废离子交换树脂的安全处理已成为困扰各国的难题。湿式氧化法具有反应条件温和、工序简单、经济有效等优点,近年来在放射性废物处理领域受到广泛关注。本文概述了国内外废树脂湿式氧化处理技术,包括酸煮解、超临界水氧化分解法、间接电化学氧化分解法和湿式过氧化氢氧化法;重点分析了废树脂湿式过氧化氢氧化法的发展现状、影响因素、反应机理、反应动力学以及放射性核素的去向;并进一步探讨了湿式氧化法在废树脂处理领域的发展方向及应用前景。

本文引用格式

徐乐瑾 , 隋增光 . 湿式氧化法处理放射性废离子交换树脂研究进展[J]. 科技导报, 2017 , 35(13) : 29 -36 . DOI: 10.3981/j.issn.1000-7857.2017.11.004

Abstract

With the development of nuclear industry, the treatment and disposal of spent radioactive ion exchange resins has become a problem that needs to be solved at present. Because of the moderate reaction conditions, simple equipment, and low operational cost, wet air oxidation has recently received considerable attention from the research field of radioactive wastes treatment. In this paper, various advanced wet air oxidation processes for treatment of spent resins are summarized, including acid boiling degradation, supercritical water oxidation, electrochemical oxidation, and wet catalytic oxidation with hydrogen peroxide. The development status, influencing factors, reaction mechanism and kinetics of wet catalytic oxidation, as well as the distribution of radioactive nuclides in the off-gas, decomposition solution and solid residue, are briefly introduced. The future research directions and applications are also discussed.

参考文献

[1] 陈斌. 核电厂低中放废树脂处理工艺[J]. 辐射防护通讯, 2010, 30(1): 13-16. Chen Bin. Process research of spent resin treatment from NPP[J]. Radiation Protection Bulletin, 2010, 30(1): 13-16.
[2] 孙奇娜, 李俊峰, 王建龙. 水胶比对水泥固化放射性废树脂的影响[J]. 原子能科学技术, 2012, 46(11): 1301-1306. Sun Qina, Li Junfeng, Wang Jianlong. Effect of water/binder ratio on cementation of radioactive spent resin[J]. Atomic Energy Science and Technology, 2012, 46(11): 1301-1306.
[3] 罗上庚. 废离子交换树脂的优化处理[J]. 核科学与工程, 2003, 23(2): 165-172. Luo Shanggeng. Optimizing the management of spent ion exchange Resin[J]. Chinese Journal of Nuclear Science and Engineering, 2003, 23 (2): 165-172.
[4] Wang J L, Wan Z. Treatment and disposal of spent radioactive ionexchange resins produced in the nuclear industry[J]. Progress in Nuclear Energy, 2015, 78: 47-55.
[5] Jārnstrōm R. Microbiological treatment of radioactive waste ion exchange resins[M]//Ion Exchange Advances. Springer Netherlands, 1992: 245-249.
[6] 邱亮, 丰俊东. 微生物对放射性核素吸附行为的研究进展[J]. 环境工 程, 2015(6): 30-34. Qiu Liang, Feng Jundong. Researchprogress on biosorption of radionuclides[J]. Environmental Engineering, 2015(6): 30-34.
[7] Vijayan S, Kikuchi M, Komatsu A. Technology perspectives on the management of spent-resin wastes generated from nuclear power reactor operations [C]. Tenth International Conference on Nuclear Engineering, Arlington, VA, April 14-18, 2002.
[8] Zimmermann F J. New waste disposal process[J]. Chemical Engineering Journal, 1958, 65(8): 117-121.
[9] 罗上庚. 放射性废物概论[M]. 北京: 原子能出版社, 2003: 109-116. Luo Shanggeng. An outline of radioactive waste[M]. Beijing: Rtomic Energy Press, 2003: 109-116.
[10] Kobayashi Y, Matsuzuru H, Akatsu J, et al. Acid digestion of radioactive combustible wastes: Use of hydrogen peroxide for acid digestion of ion exchange resins[J]. Journal of Nuclear Science and Technology, 1980, 17(11): 865-868.
[11] Modell M. Processing methods for the oxidation of organics in supercritical water: WO, US 4338199 A[P]. 1982-07-06.
[12] 朱自强. 超临界流体技术: 原理和应用[M]. 北京: 化学工业出版社, 2000: 506-509. Zhu Ziqiang. Supercritical fluid technology: principles and applications[M]. Beijing: Chemical Industry Press, 2000: 506-509.
[13] 王亮, 王树众, 张钦明, 等. 含油废水的超临界水氧化反应机理及动 力学特性[J]. 西安交通大学学报, 2006, 40(1): 115-119. Wang Liang, Wang Shuzhong, Zhang Qinming, et al. Reaction mechanism and kinetics of oil-bearing sewage disposal by supercritical water oxidation[J]. Journal of Xian Jiaotong University, 2006, 40(1): 115-119.
[14] Akai Y, Yamada K, Sako T. Ion-exchange resin decomposition in supercritical water[J]. High Pressure Research, 2001, 20: 515-524.
[15] Leybros A, Roubaud A, Guichardon P, et al. Ion exchange resins destruction in a stirred supercritical water oxidation reactor[J]. The Journal of Supercritical Fluids, 2010, 51: 369-375.
[16] Leybros A, Roubaud A, Guichardon P, et al. Supercritical water oxidation of ion exchange resins: Degradation mechanisms[J]. Process Safety and Environmental Protection, 2010, 88: 213-222.
[17] KimK, SonS H, KimK, et al. Treatment of radioactive ionic exchange resins by super-and sub-critical water oxidation (SCWO)[J]. Nuclear Engineering and Design, 2010, 240: 3654-3659.
[18] Kim K, Choi M, SonS H, et al. Treatment of ion exchange resins used in nuclear power plants by super-and sub-critical water oxidation-A road to commercial plant from bench-scale facility[J]. Chemical Engineering Journal, 2012, 189-190: 213-221.
[19] 程娟, 李全伟. 放射性废树脂氧化分解处理技术[J]. 同位素, 2012, 25(2): 124-128. Cheng Juan, Li Quanwei. New research progress on the oxidative decomposition technology for spent radioactive ion exchange resin[J]. Journal of Isotopes, 2012, 25(2): 124-128.
[20] Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts[J]. Chemical Engineering Journal, 2001, 83(3): 207-214.
[21] 邢海青, 马辉, 张振涛, 等. Ag(Ⅱ)间接电化学氧化处理TBP技术研究[J]. 中国原子能科学研究院年报, 2009, 2010: 396-396. Xing Haiqing, Ma Hui, Zhang Zhentao, et al. Study on the treatment of TBP by indirect electrochemical oxidation using Ag(Ⅱ)[J]. Annual Report For China Institute of Atomic Energy, 2009, 2010: 396-396.
[22] 成章, 王京刚, 文明芬, 等. 间接电化学氧化体系处理废有机溶剂[J]. 北京化工大学学报(自然科学版), 2008, 35(2): 14-17. Cheng Zhang, Wang Jinggang, Wen Mingfen, et al. Treatment of spent solvent by mediated electrochemical oxidation[J]. Journal of Beijing University of Chemical Technology, 2008, 35(2): 14-17.
[23] 马辉, 张振涛, 邢海青, 等. Ag(Ⅱ)氧化处理TBP和离子交换树脂技术 研究[C]. 第九届全国核化学与放射化学学术研讨会, 赤峰, 8.23-27, 2010. Ma hui, Zhang Zhentao, Xing Haiqing, et al. Study on the oxidative treatment of TBP and ion exchange resin using Ag(Ⅱ)[C]. The Ninth National Symposium on Nuclear Chemistry and Radiation Chemistry, Chifeng, August 23-27, 2010.
[24] Fenton H J H. LXXⅢ.-Oxidation of tartaric acid in presence of iron[J]. Journal of the Chemical Society, Transactions, 1894, 65(0): 899-910.
[25] Todo F, Sasaki T, Suzuki K. Decomposition of organic wastes by wetox-idation with hydrogen peroxide oxidant[C]//Proceedings of the Fifth In-ternational Conference on Radioactive Waste Management and Envi-ronmental Remediation, ICEM'95, 1995,1099-1101.
[26] Taylor P A. Destruction of ion-exchange resin in waste from the HFIR, T1 and T2 Tanks using Fenton's reagent[R]. Ornl/tm, 2002.
[27] Zahorodna M, Bogoczek R, Oliveros E, et al. Application of the Fenton process to the dissolution and mineralization of ion exchange resins[J]. Catalysis Today, 2007, 129(1-2): 200-206.
[28] Zahorodna M, Oliveros E, Wörner M, et al. Dissolution and mineraliza-tion of ion exchange resins: differentiation between heterogeneous and homogeneous (photo-)Fenton processes[J]. Photochemical & Photobio-logical Sciences, 2008, 7(12): 1480-1492.
[29] Gunale T L, Mahajani V V, Wattal P K, et al. Liquid phase mineral-ization of gel-type anion exchange resin by a hybrid process of Fen-ton dissolution followed by sonication and wet air oxidation[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(1): 90-98.
[30] Gunale T L, Mahajani V V, Wattal P K, et al. Studies in liquid phase mineralization of cation exchange resin by a hybrid process of Fenton dissolution followed by wet oxidation[J]. Chemical Engineering Jour-nal, 2009, 148(2): 371-377.
[31] 黃庆村. 放射性废离子子交换树脂減容与安定化技术之建立[C]//第 五届两岸核能学术交流研讨会论文集, 中国台湾台北, 2005, 18: 269-286. Huang Qingcun. The establishment of volume reduction and immobilization technology for radioactive spent ion exchange resins[C]. Proceedings of The Fifth Cross-strait Workshop for Nuclear Energy Academic Exchange, China Taiwan Taibei, 2005, 18: 269-286.
[32] 耿作红. 放射性废离子交换树脂的湿法化学氧化技术研究[D]. 北 京: 清华大学核能技术设计研究院, 1993. Geng Zuohong. A study on wet chemical oxidation of radioactive spent ion-exchange resin[D]. Beijing: Institute of Nuclear Energy Technology of Tsinghua University, 1993.
[33] 张晔. 放射性废离子交换树脂稳定化技术研究[D]. 北京:清华大学 核能技术设计研究院, 1994. Zhang Ye. A study on the immobilization technology of radioactive spent ion-exchange resin[D]. Beijing: Institute of Nuclear Energy Technology of Tsinghua University, 1994.
[34] 蹇兴超, 云桂春. 放射性废离子交换树脂过氧化氢湿法催化氧化技 术研究[J]. 辐射防护, 1995, 15(3): 203-209. Jian Xingchao, Yun Guichun. A Study on wet catalysis oxidation of spent radioactive ion-exchange resin by hydrogen peroxide[J]. Radiation Protection, 1995, 15(3): 203-209.
[35] Jian X, Wu T, Yun G. A study of wet catalytic oxidation of radioactive spent ion exchange resin by hydrogen peroxide[J]. Nuclear Safety, 1996, 37(2): 149-157.
[36] Wan Z, Xu L J, W J L. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process[J]. Nuclear Engineering & Design, 2015, 291: 101-108.
[37] Wan Z, Xu L J, Wang J L. Treatment of spent radioactive anionic exchange resins using Fenton-like oxidation process[J]. Chemical Engineering Journal, 2016, 284: 733-740.
[38] 梁志荣, 岳宗虎. 芬顿氧化法预处理放射性废离子交换树脂[C]//2006全国核材料学术交流会论文集. 北京: 中国核学会, 2006: 284-287. Liang Zhirong, Yue Zonghu. Pre-treatment of radioactive spent ion exchange resin by Fenton process[C]//Proceedings of the National Symposium on Nuclear Materials in 2006. Beijing: Chinese Nuclear Society, 2006: 284-287.
[39] 梁志荣, 吴玉生, 刘学军. 芬顿氧化法预处理放射性废离子交换树 脂[J]. 核化学与放射化学, 2007, 29(2): 71-74. Liang Zhirong, Wu Yusheng, Liu Xuejun. Pre-treatment of radioactive spent ion exchange resin by Fenton process[J]. Journal of Nuclear and Radiochemistry, 2007, 29(2): 71-74.
[40] Bibler N E, Orebaugh E G. Iron-catalyzed dissolution of polystyrene-sulfonate cation-exchange resin in hydrogen peroxide[J]. Industrial & Engineering Chemistry Product Research & Development, 1976, 15(2): 136-138.
[41] Chun U K, Choi K, Yang K H, et al. Waste minimization pretreatment via pyrolysis and oxidative pyroylsis of organic ion exchange resin[J]. Waste Management, 1998, 18(3): 183-196.
[42] Kubota M. Decomposition of a cation exchange resin with hydrogen peroxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 1983, 78(2): 295-305.
[43] Haber F, Weiss J. über die katalyse des hydroperoxydes[J]. Naturwis-senschaften, 1932, 20(51): 948-950.
[44] Bray W C, Gorin M H. Ferryl ion, a compound of tetravalent iron[J]. Journal of the American Chemical Society, 1932, 54(5): 2124-2125.
[45] 杨琦, 单立志, 钱易. 国外对污水湿式催化氧化处理的研究进展[J]. 环境科学研究, 1998, 11(4): 64-66. Yang Qi, Shan Lizhi, Qian Yi. Advance in catalytic wet air oxidation of wastewater abroad[J]. Research of Environmental Sciences, 1998, 11 (4): 62-64.
[46] Walling C, Kato S. Oxidation of alcohols by Fenton's reagent. Effect of copper ion[J]. Journal of the American Chemical Society, 1971, 93 (17): 4275-4281.
[47] Li L, Chen P, Gloyna E F. Generalized kinetic model for wet oxidation of organic compounds[J]. AIChE Journal, 1991, 37(11): 1687-1697.
[48] Zhang Q, Chuang K T. Lumped kinetic model for catalytic wet oxidation of organic compounds in industrial wastewater[J]. AIChE Journal, 1999, 45(1): 145-150.
[49] Belkacemi K, Larachi F, Sayari A. Lumped kinetics for solidcatalyzed wet oxidation: A versatile model[J]. Journal of Catalysis, 2000, 193(2): 224-237.
[50] Barbier J, Delanoë F, Jabouille F, et al. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts[J]. Journal of Catalysis, 1998, 177(2): 378-385.
[51] Wang Y, Sun H, Duan X, et al. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol[J]. Applied Catalysis B Environmental, 2015, 172-173: 73-81.
[52] Kim S, Ginsbach J W, Lee J Y, et al. Amine oxidative n-fealkylation via vupric hydroperoxide Cu-OOH homolytic cleavage followed by site-specific Fenton chemistry[J]. Journal of the American Chemical Society, 2015, 137(8): 2867-74.
[53] Qu J, Shi L, He C, et al. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue[J]. Carbon, 2014, 66(66): 485-492.
[54] Civan F, Özaltun D H, Kıpçak E, et al. The treatment of landfill leachate over Ni/Al2O3 by supercritical water oxidation[J]. Journal of Supercritical Fluids, 2015, 100: 7-14.
[55] Zhong Y, Liang X, He Z, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: From the perspective of hydroxyl radical generation[J]. Applied Catalysis B Environmental, 2014, s 150-151: 612-618.
[56] Costa D A S, Oliveira A A S, de Souza P P, et al. The combined effect between Co and carbon nanostructures grown on cordierite monoliths for the removal of organic contaminants from the liquid phase[J]. New Journal of Chemistry, 2015, 39(2): 1438-1444.
[57] Guimaraes I R, Giroto A, Oliveira L C A, et al. Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process[J]. Applied Catalysis B Environmental, 2009, 91(3-4): 581-586.
[58] Pagano M, Volpe A, Lopez A, et al. Degradation of chlorobenzene by Fenton-like processes using zero-valent iron in the presence of Fe3 + and Cu2+[J]. Environmental Technology, 2011, 32(2): 155-165.
[59] Xu L J, Wang J L. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol[J]. Journal of Hazardous Materials, 2011, 186(1): 256-264.
[60] Choi K, Lee W. Enhanced degradation of trichloroethylene in nanoscale zero-valent iron Fenton system with Cu(Ⅱ) [J]. Journal of Hazardous Materials, 2011, 211-212(8): 146-153.
[61] Xu L J, Wang J L. Degradation of 4-chloro-3,5-dimethylphenol by a heterogeneous Fenton-like reaction using nanoscale zero-valent iron catalysts[J]. Environmental Engineering Science, 2013, 30(6): 294-301.
[62] 刘俊, 官春芬, 曾旭,等. 催化湿式氧化技术中催化剂的研究进展[J]. 广东化工, 2016, 43(12): 88-89. Liu Jun, Guan Chunfen, Zeng Xu, et al. Research progress on the catalyst in catalytic wet air oxidation[J]. Guangdong Chemical Industry, 2016, 43(12): 88-89.
文章导航

/