专题论文

核电厂海域放射性后果评价系统

  • 郭猜 ,
  • 林权益 ,
  • 岳会国 ,
  • 杨静 ,
  • 乔清党
展开
  • 1. 环境保护部核与辐射安全中心, 北京 100082;
    2. 国家海洋环境预报中心, 北京 100081
郭猜,工程师,研究方向为核设施事故应急及后果评价,电子信箱:guocai1234@163.com

收稿日期: 2017-01-02

  修回日期: 2017-06-09

  网络出版日期: 2017-07-17

基金资助

国家高技术研究发展计划(863计划)项目(2012AA050907)

An oceanic environment radiation consequence analysis system for nuclear power plants

  • GUO Cai ,
  • LIN Quanyi ,
  • YUE Huiguo ,
  • YANG Jing ,
  • QIAO Qingdang
Expand
  • 1. Nuclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082, China;
    2. National Marine Environmental Forecasting Center, Beijing 100081, China

Received date: 2017-01-02

  Revised date: 2017-06-09

  Online published: 2017-07-17

摘要

基于中国海域海流预报数据和核电厂近岸海域的高分辨率岸线及海底地形资料,建立了核电厂海域放射性后果预测与评价系统。该系统采用成熟的海流预报模型和输运扩散数值模型及直观的剂量评估方法,可对中国不同核电厂址核事故下液态放射性物质的排放进行污染物输运路径模拟,并可以在中国特定核电厂的近岸海域进行精细化3维后果评价,为应急响应行动提供决策技术支持。本文针对宁德核电厂进行了假想核事故案例计算,结果表明一般情况下模拟海域内潮流类型为半日潮流,落潮流向偏东,涨潮流向偏西,海流速度较小,扩散过程缓慢,会在近岸海域积累较高的放射性浓度。

本文引用格式

郭猜 , 林权益 , 岳会国 , 杨静 , 乔清党 . 核电厂海域放射性后果评价系统[J]. 科技导报, 2017 , 35(13) : 45 -51 . DOI: 10.3981/j.issn.1000-7857.2017.11.006

Abstract

Based on ocean current numerical forecast in China Seas, high-resolution coast line and bathymetrictopography data of nearshore area, an oceanic radiation consequence analysis system has been established for nuclear power plants. The developed system adopts models used for current forecast, radioactive effluent numerical dispersions and radiological dose assessment. The system can simulate the dispersion path of radioactive effluent in various domestic nuclear power plants, and can make sophisticated three-dimension assessment in the nearshore area of a specific nuclear power plant. The assessment result can provide technical support for decisions on emergency response action. This paper provides an assessment result on an assumed nuclear accident in the Ningde Nuclear Power Plant. The assessment result shows that in the assumed situation, the ocean current in the simulated sea area is slow and semi-diurnal, which heads eastward during falling tide, westward during rising tide. The slow ocean current causes a slow diffusion process, thus high radioactive concentration will be accumulated in the near shore area.

参考文献

[1] International Atomic Energy Agency. The fukushima daiichi accident re-port by the director general[R]. Austria: International Atomic Energy Agency, 2015: 106-107.
[2] Li B, Chen Y Y. Post-accident leakage and discharge of radioactive waste liquid at Fukushima Dai-ichi NPP and its environmental impacts[J]. Radiation Protection. 2012, 32(6): 336-347.
[3] Periáñez R, Brovchenko I. A new comparison of marine dispersion mod-el performances for Fukushima Dai-ichi releases in the frame of IAEA MODARIA program[J]. Journal of Environmental Radioactivity, 2015, 150: 247-269.
[4] Maderich V, Bezhenar R, Heling R, et al. Regional long-term model of radioactivity dispersion and fate in the northwestern pacific and adja-cent seas: Application to the Fukushima Dai-ichi accident[J]. Journal of Environmental Radioactivity, 2014, 131: 4-18.
[5] Nakano M, Povinec P P. Long-term simulations of the 137Cs dispersion from the Fukushima accident in the world ocean[J]. Journal of Environ-mental Radioactivity, 2012, 111: 109-115.
[6] du Bois P B, Laguionie P, Boust, et al. Estimation of marine sourceterm following Fukushima Dai-ichi accident[J]. Journal of Environmen-tal Radioactivity, 2012, 114: 2-9.
[7] Wang S W, Qiao Q D, et al. Assessment of radiological consequence of coastal seawater after coastal nuclear power plant accident[J]. South-to-North Water Transfers and Water Science & Technology, 2012, 10(6): 176-180.
[8] Qiao Q D, Guo C. Method research of radiation consequence evaluation in the ocean discharged from nuclear accident[J]. Nuclear Safety, 2015 (2): 12-19.
[9] Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-vol-ume coastal ocean model FVCOM user manual[J]. Oceanography, 2006, 19(1): 78-89.
[10] Valentin J. A framework for assessing the impact of ionizing radiation on non-human species: Publication 91[J]. Annals of the ICRP 33, 2003, 33(3): 201-270.
[11] Larsson C M. The FASSET framework for assessment of the impact of ionising radiation on non-human species[J]. Journal of Radiological Protection, 2004(24): A1-A12.
[12] Bai X P, Du H Y, Zheng W. Comparative study of RESRAD-BIOTA and ERICA programs in assessment of radiation effect on pelagic fish[J]. Radiation Protection, 2011, 31(2): 65-71.
[13] Ma W L, Cao J Z, Fang D. Analysis and study on generic models for use in assessing the impact of radioactive liquid effluent to the envi-ronment[J]. Radiation Protection, 2008, 28(2): 90-96.
[14] Suzhou nuclear power research institute. Environmental impact state-ment on unit 3 and unit 4[R]. Ningde: Fujian Ningde Nuclear Power Co.Ltd., 2009.
[15] Harms I H, Karcher M J, Burchard H. Modelling radioactivity in the marine environment: The application of hydrodynamic circulation mod-els for simulating oceanic dispersion of radioactivity[J]. Radioactivity in the Environment, 2003(4): 55-85.
[16] Koziy L, Maderich V, Margvelashvili N, et al. Three-dimensional mod-el of radionuclide dispersion in estuaries and shelf seas[J]. Environ-mental Modelling and Software, 1998, 13(5/6): 413-420.
[17] Heldal H E, Vikebø F, Johansen G O. Dispersal of the radionuclide caesium-137 (137Cs) from point sources in the Barents and Norwegian Seas and its potential contamination of the Arctic marine food chain:Coupling numerical ocean models with geographical fish distribution data[J]. Environmental Pollution, 2012, 164: 1-10.
[18] Lepicard S, Heling R, Maderich V, POSEIDON/RODOS models for ra-diological assessment of marine environment after accidental releases: Application to coastal areas of the Baltic, Black and North Seas[J]. Journal of Environmental Radioactivity, 2004, 72: 153-161.
文章导航

/