From the perspective of data assimilation, we analyze some useful technologies including Kalman filter, meta-heuristics algorithm, Bayesian inference, non parametric regression, and traditional optimization method,and summarize their applications to the environmental monitoring data assimilation problem. The paper shows that different methods can be applied to solve the environmental monitoring data assimilation problems, and that the meta-heuristics algorithm combined with the traditional optimization method has a hopeful future in this field.
[1] 王跃山. 数据同化—它的缘起、含义和主要方法[J]. 海洋预报, 1999, 16(1): 11-20. Wang Yueshan. Data assimilation-Its cause, meaning and main procedures[J]. Marine Forecasts, 1999, 16(1): 11-20.
[2] Rojas-Palma C, Madsen H, Gering F, et al. Data assimilation in the de- cision support system RODOS[J]. Radiation Protestion Dosimetry, 2003, 104(1): 31-40.
[3] Drews M, auritzen B, Madsen H. Analysis of a Kalman Filter based method for on-line estimation of a atmospheric dispersion parameters using radiation monitoring data[J]. Radiation Protection Dosimetry, 2005, 113(1): 75-89.
[4] Zheng D Q, Leung J K C, Lee B Y. Online update of model state and parameters of a Monte Carlo atmospheric dispersion model by using en- semble Kalman filter[J]. Atmospheric Environment, 2009, 43(12): 2005- 2011.
[5] Seibert P, Frank A, Kromp-Kolb H. Inverse modelling of atmospheric trace substances on the regional scale with Lagrangian models[C]//Pro- ceedings of the EUROTRAC-2 Symposium. Garmisch-Partenkirchen, Germany, 2002.
[6] Flesch T K, Wilson J D, Harper L A, et al. Estimating gas emissions from a farm with an inverse dispersion technique[J]. Atmospheric Envi- ronment, 2005, 39(27): 4863-4874.
[7] 邢文训, 谢金星. 现代优化计算方法[M]. 北京: 清华大学出版社, 2005. Xing Wenxun, Xie Jinxing. Modern optimization method[M]. Beijing: Tsinghua University Press, 2005.
[8] Holland J H. Adaptation in natural and artificial systems[M]. Ann Ar- bor: The University of Michigan Press, 1975.
[9] Haupt S E, Young G S, Allen C T. Validation of a receptor/dispersion model coupled with a genetic algorithm using synthetic data[J]. Journal of Applied Meteorology, 2006, 45(3): 476-490.
[10] Allen C T, Haupt S E, Young G S. Source characterization with a ge- netic algorithm-coupled dispersion-backward model incorporating SCIPUFF[J]. Journal of Applied Meteorology & Climatology, 2007, 41 (4): 465-479.
[11] Long K J, Haupt S E, Young G S. Assessing sensitivity of source term estimation[J]. Atmospheric Environment, 2010, 44(12): 1558-1567.
[12] MacDonald I R, Reilly J F, Jr Best S E. A remote sensing inventory of active oil seeps and chemosynthetic communities in the northern Gulf of Mexico[C]. New York: The American Association of Petroleum Geol- ogists, 1996.
[13] Thomsona L C, Hirstb B, Gibsona G, et al. An improved algorithm for locating a gas source using inverse methods[J]. Atmospheric Environ- ment, 2007, 41(6): 1128-1134.
[14] Pfeiffer H, Baumbach G, Sarachaga-Ruiz L, et al. Neural modelling of the spatial distribution of air pollutants[J]. Atmospheric Environment, 2009, 43(20): 3289-3297.
[15] Senocak I, Hengartner N W, Short M B, et al. Stochastic event recon- struction of atmospheric contaminant dispersion using Bayesian infer- ence[J]. Atmospheric Environment, 2008, 42(33): 7718-7727.
[16] Henry R C, Chang Y S, Spiegelman C H. Locating nearby sources of air pollution by nonparametric regression of atmospheric concentra- tions on wind direction[J]. Atmospheric Environment, 2002, 36(13): 2237-2244.
[17] Nelder J A, Mead R. A simplex method for function minimization[J]. Computer Journal, 1965, 7(4): 308-313.
[18] AllenC T, Young G S, Haupt S E, et al. Improving pollutant source characterization by better estimating wind direction with a genetic al- gorithm[J]. Atmospheric Environment, 2007, 41(11): 2283-2289.
[19] Keats A, Yee E, Lien F S. Bayesian inference for source determina- tion with applications to a complex urban environment[J]. Atmospher- ic Environment, 2007, 41(3): 465-479.
[20] 马建文, 秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757. Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science, 2012, 27(7): 747-757.
[21] 毕海芸, 马建文. 粒子滤波算法在数据同化中的应用研究进展[J]. 遥 感技术与应用, 2014, 29(5): 701-710. Bi Haiyun, Ma Jianwen. Advances in the study of particle filter in data assimilation[J]. Remote Sensing Technology and Application, 2014, 29(5): 701-710.
[22] 摆玉龙, 李新. 耦合遗传算法的数据同化系统误差处理方法[J]. 解放 军理工大学学报(自然科学版), 2011, 12(6): 702-708. Bai Yulong, Li Xin. Error processing methods of data assimilation systems coupled with genetic algorithms[J]. Journal of PLA University of Science and Technology (National Science Edition), 2011, 12(6): 702-708.
[23] 袁彪, 王良瑜, 绪梅, 等. 数据同化在核事故辐射场评估中的应用研 究[J]. 中国安全科学学报, 2015, 25(5): 31-36. Yuan Biao, Wang Liangyu, Xu Mei, et al. Research on application of data assimilation in nuclear accident radiation field assessment[J]. China Safety Science Journal, 2015, 25(5): 31-36.
[24] 潘萌, 张春粦, 张杰. 大亚湾核电站周围大气流场监测数据同化分 析[J]. 计算物理, 2007, 24(1): 65-70. Pan Meng, Zhang Chunlin, Zhang Jie. Data assimilation for the air flow around Daya bay nuclear power station[J]. Chinese Journal Of Computational Physics, 2007, 24(1): 65-70.