专题论文

交通网络与通信网络中的路径策略

  • 陈博奎 ,
  • 蒋艳群 ,
  • 颜登程 ,
  • 汪秉宏
展开
  • 1. 新加坡国立大学计算机学院, 新加坡 117417;
    2. 西南科技大学理学院, 绵阳 621010;
    3. 中国科学技术大学近代物理系, 合肥 230026
陈博奎,研究员,研究方向为智能交通系统、通信网络,电子信箱:chenssx@qq.com

收稿日期: 2017-05-11

  修回日期: 2017-06-26

  网络出版日期: 2017-07-29

基金资助

Singapore Ministry of EducationResearch Grant(MOE 2013-T2-2-033);国家自然科学基金项目(11202175,11275186,91024026)

Path strategies in transportation networkand communication network

  • CHEN Bokui ,
  • JIANG Yanqun ,
  • YAN Dengcheng ,
  • WANG Binghong
Expand
  • 1. School of Computing, National University of Singapore, Singapore 117417, Singapore;
    2. School of Science, Southwest University of Science and Technology, Mianyang 621010, China;
    3. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

Received date: 2017-05-11

  Revised date: 2017-06-26

  Online published: 2017-07-29

摘要

交通网络和通信网络在现代生活中扮演着越来越重要的角色,人们几乎每天都会接触到这两种网络,世界各国政府都在加强相关基础设施建设。然而单纯地增加基础设施,例如拓宽道路、增加带宽,并不能满足人们日益增长的需求;更重要的是优化管理,充分利用现有的资源提高这两种网络的运行效率,而提高它们运行效率的关键就是设计合理有效的路径策略。本文介绍了交通网络和通信网络的相同和不同之处,回顾了交通网络中用于指导车辆行驶的路径选择策略和用于指导行人通行的行走策略,以及通信网络的路由策略及算法。通过比较交通网络和通信网络,发现基于全局信息的策略均好于基于局部信息的策略。然而由于受到网络规模的限制,基于局部信息的路由策略更适合应用在通信网络上。基于全局信息的路径选择策略更适合应用在交通网络上。

本文引用格式

陈博奎 , 蒋艳群 , 颜登程 , 汪秉宏 . 交通网络与通信网络中的路径策略[J]. 科技导报, 2017 , 35(14) : 23 -26 . DOI: 10.3981/j.issn.1000-7857.2017.14.002

Abstract

The traffic network and the communication network play a more and more important role in modern life. Almost all people use these two networks everyday. Thus the governments around the world increase the investment in their infrastructure. However, increasing the infrastructure alone, such as broadening the road and the bandwidth, can not meet the growing demand. More importantly, we must focus on optimizing management and making the best use of existing infrastructure in order to improve the performance of these two networks. The key to improving the efficiency is to design effective path strategies. In this paper, we first give a brief introduction of the similarities and the differences between the traffic network and the communication network. Then we review the route choice strategies used to guide the vehicle and path strategies used to guide the pedestrian in the transportation network, and the routing strategies in the communication network. By comparison, we find that the strategies based on the global information are better than those based on the local information. However, due to the factor of the network size, the strategies based on the local information are more suitable for the communication network, and the strategies based on the global information are more suitable for the transportation network.

参考文献

[1] Wahle J, Bazzan A L C, Klügl F, et al. Decision dynamics in a traffic scenario[J]. Physica A:Statistical Mechanics and its Applications, 2000, 287(3/4):669-681.
[2] Lee K, Hui P, Wang B H, et al. Effects of announcing global informa tion in a two-route traffic flow model[J]. Journal of the Physical Society of Japan, 2001, 70(12):3507-3510.
[3] Wang W X, Wang B H, Zheng W C, et al. Advanced information feed back in intelligent traffic systems[J]. Physical Review E Statistical Non linear & Soft Matter Physics, 2005, 72(2):066702.
[4] Dong C F, Ma X, Wang G W, et al. Prediction feedback in intelligent traffic systems[J]. Physica A:Statistical Mechanics and its Applica tions, 2009, 388(21):4651-4657.
[5] Chen B, Dong C, Liu Y, et al. Real-time information feedback based on a sharp decay weighted function[J]. Computer Physics Communica tions, 2012, 183(10):2081-2088.
[6] Chen B, Xie Y, Tong W, et al. A comprehensive study of advanced in formation feedbacks in real-time intelligent traffic systems[J]. Physica A:Statistical Mechanics and its Applications, 2012, 391(8):2730-2739.
[7] Li M, Ding Z J, Jiang R, et al. Traffic flow in a Manhattan-like urban system[J]. Journal of Statistical Mechanics Theory & Experiment, 2011, 12(12):849-976.
[8] Knoop V L, Hoogendoorn S P, Van J W C. Routing strategies based on macroscopic fundamental diagram[J]. Transportation Research Record, 2012, 2315:1-10.
[9] Løvås G G. Modeling and simulation of pedestrian traffic flow[J]. Trans portation Research Part B:Methodological, 1994, 28(6):429-443.
[10] Cheung C Y, Lam W H K. Pedestrian route choices between escalator and stairway in MTR stations[J]. Journal of Transportation Engineering, 1998, 124(3):277-285.
[11] Hoogendoorn S P, Bovy P H L. Pedestrian route-choice and activity scheduling theory and models[J]. Transportation Research Part B:Meth odological, 2004, 38(2):169-190.
[12] Huang L, Wong S C, Zhang M P, et al. Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an effi cient solution algorithm[J]. Transportation Research Part B:Methodolog ical, 2009, 43(1):127-141.
[13] Jiang Y Q, Guo R Y, Tian F B, et al. Macroscopic modeling of pedes trian flow based on a second-order predictive dynamic model[J]. Ap plied Mathematical Modelling, 2016, 40(23):9806-9820.
[14] Jiang Y Q, Wong S C, Ho H W, et al. A dynamic traffic assignment model for a continuum transportation system[J]. Transportation Re search Part B:Methodological, 2011, 45(2):343-363.
[15] Jiang Y Q, Wong S C, Zhang P, et al. Numerical simulation of a con tinuum model for bi-directional pedestrian flow[J]. Applied Mathemat ics and Computation, 2012, 218(10):6135-6143.
[16] Jiang Y Q, Zhang P, Wong S C, et al. A higher-order macroscopic model for pedestrian flows[J]. Physica A:Statistical Mechanics and its Applications, 2010, 389(21):4623-4635.
[17] Wang W X, Wang B H, Yin C Y, et al. Traffic dynamics based on lo cal routing protocol on a scale-free network[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2006, 73(2):026111.
[18] Wang W X, Yin C Y, Yan G, et al. Integrating local static and dynam ic information for routing traffic[J]. Physical Review E:Statistical Non linear & Soft Matter Physics, 2006, 74(1):16101.
[19] Ling X, Hu M B, Jiang R, et al. Pheromone routing protocol on a scale-free network[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2009, 80(6):66110.
[20] Yan G, Zhou T, Hu B, et al. Efficient routing on complex networks[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2006, 73(4):46108.
[21] Ling X, Hu M B, Jiang R, et al. Global dynamic routing for scale-free networks[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2010, 81(1):16113.
[22] Lin B C, Chen B K, Gao Y C, et al. Advanced algorithms for local routing strategy on complex networks[J]. PloS One, 2016, 11(7):e0156756.
文章导航

/