研究论文

布袋除尘器改造电除尘器关键技术在600 MW燃煤机组超低排放改造工程中的应用分析

  • 范学明 ,
  • 王磊 ,
  • 桑媛媛 ,
  • 王仕龙 ,
  • 韩平 ,
  • 郑钦臻 ,
  • 闫克平
展开
  • 1. 山西鲁能河曲发电公司, 河曲 036500;
    2. 神华国能集团有限公司, 北京 100033;
    3. 浙江大学化学工程与生物工程学院, 杭州 310027
范学明,工程师,研究方向为燃煤电厂脱硫脱硝除尘,电子信箱:17048616@shenhua.cc

收稿日期: 2017-03-13

  修回日期: 2017-05-02

  网络出版日期: 2017-08-16

基金资助

国家高技术研究发展计划(863计划)项目(2013AA065000);浙江省重点科技创新团队计划项目(2013TD07)

Application of key technology changing bag filter to electrostatic precipitator in ultra-low emission upgrading projects of coal-fired power plants

  • FAN Xueming ,
  • WANG Lei ,
  • SANG Yuanyuan ,
  • WANG Shilong ,
  • HAN Ping ,
  • ZHENG Qinzhen ,
  • YAN Keping
Expand
  • 1. Shanxi Luneng Hequ Power Plant, Hequ 036500, China;
    2. Shenhua Guoneng Energy Group Corperation Limited, Beijing 100033, China;
    3. Institue of Industrial Ecology and Environment, Zhejiang University, Hangzhou 310027, China

Received date: 2017-03-13

  Revised date: 2017-05-02

  Online published: 2017-08-16

摘要

山西鲁能河曲发电公司完成了2×600 MW燃煤机组布袋除尘器改造为低低温电除尘器,实现了超低排放,通过协同优化三相电源低低温电除尘器和湿法脱硫同步实现SO2和颗粒物的超低排放,针对本燃煤机组工况特点以及原布袋除尘器本体大小,通过对电除尘器本体选型、流场优化、三相电源等关键技术的工程应用,完成布袋除尘器改造电除尘器。结果表明:在电除尘器比集尘面积为83.5 m2/(m3·s)、入口烟尘质量浓度为35.8 g/m3的条件下,电除尘器出口烟尘排放总质量浓度在9.93~14.69 mg/m3,其中PM2.5排放质量浓度不高于1.58 mg/m3。三相电源低低温电除尘集成湿法脱硫可满足燃煤电厂超低排放要求。

本文引用格式

范学明 , 王磊 , 桑媛媛 , 王仕龙 , 韩平 , 郑钦臻 , 闫克平 . 布袋除尘器改造电除尘器关键技术在600 MW燃煤机组超低排放改造工程中的应用分析[J]. 科技导报, 2017 , 35(15) : 51 -56 . DOI: 10.3981/j.issn.1000-7857.2017.15.007

Abstract

This paper presents a pioneer project of changing the bag-filter into colder-side electrostatic precipitator (ESP) for two 600 MW coal-fired boilers of Shanxi Luneng Hequ Power Plant for ultra-low emission of particle matters (PM) and sulfur dioxide (SO2) by cooperative optimization of colder-side ESP with three-phase power source and wet flue gas desulfurization (WFGD). Due to the coal-fired boiler condition and initial bag filter size, we change bag filter into ESP by taking ESP sizing, gas flow distribution optimizing, three-phase power source, etc. into consideration. The main result of this paper is when the ESP's specific collection area is 83.5 m2/(m3·s) with threephase rectifier transformer and the inlet ash load concentration is around 35.8 g/m3, the outlet particle mass concentration is 9.93~14.69 mg/m3, of which the mass concentration of particles with diameters of less than 2.5 μm is below 1.58 mg/m3. The integration of colder-side ESP with three-phase power source and WFGD can achieve ultra-low emissions of air pollutants for coal-fired power plants.

参考文献

[1] White H J. Industrial electrostatic precipitation[M]. Boston:Addison Wesley, 1963:112-130.
[2] Mizuno A. Electrostatic precipitation[J]. IEEE Transactions on Dielec-trics and Electrical Insulation, 2000, 7(5):615-624.
[3] 闫克平, 李树然, 冯卫强, 等. 高电压环境工程应用研究关键技术问题分析及展望[J]. 高电压技术, 2015, 41(8):2529-2544. Yan Keping, Li Shuran, Feng Weiqiang, et al. Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8):2528-2544.
[4] Li S R, Huang Y F, Yan K P, et al. Fundamentals and environmental applications of non-thermal plasmas:Multi-pollutants emission control from coal-fired flue gas[J]. Plasma Chemistry and Plasma Processing, 2014, 34(3):579-603.
[5] Huang Y F, Zheng Q Z, Yan K P. Recent progress of dry electrostatic precipitation for PM2.5 emission control from coal-fired boilers[J]. Inter-national Journal of Plasma Environmental Science and Technology, 2015, 9(2):69-126.
[6] Li S R, Li X Y, Yan K P, et al. Fly ash resistivity:Influencing factors, predicting models and its impacts on electrostatic precipitator perfor-mance[M]. New Yorks:NOVA Science Publishers, 2014:91-144.
[7] Li X Y, Zhang X M, Yan K P, et al. Sensitivity analysis on the maxi-mum ash resistivity in terms of its compositions and gaseous water con-centration[J]. Journal of Electrostatics, 2012, 70(1):83-90.
[8] 闫克平, 李树然, 郑钦臻, 等. 电除尘技术发展与应用[J]. 高电压技术, 2017, 43(2):476-486. Yan Keping, Li Shuran, Zheng Qinzhen, et al. Development and application of electrostatic precipitation technology[J]. High Voltage Engineering, 2017, 43(2):476-486.
[9] 肖创英. 促进燃煤电厂烟尘超低排放[J]. 科技导报, 2014, 32(33):12. Xiao Chuangying. To promote the ultra-low emission from coal-fired power plants[J]. Science & Technology Review, 2014, 32(33):12.
[10] 肖创英, 王仕龙, 韩平. 燃煤电厂电除尘器超低排放升级改造[J]. 高电压技术, 2017,43(2):487-492. Xiao Chuangying, Wang Shilong, Han Ping. Experience of upgrading electrostatic precipitators for ultra-low emission from coal-fired power plants[J]. High Voltage Engineering, 2017, 43(2):487-492.
[11] 王仕龙. 燃煤电厂电除尘PM10和PM2.5的排放控制, I:电除尘选型及工业应用[J]. 科技导报, 2014, 32(33):34-38. Wang Shilong. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants, I:ESP sizing and applications[J]. Science & Technology Review, 2014, 32(33):34-38.
[12] 马元坤. 燃煤电厂电除尘PM10和PM2.5的排放控制, V:以660 MW机组为例微细讨论高压电源运行优化[J]. 科技导报, 2015, 33(6):69-72. Ma Yuankun. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants, V:optimization of high voltage power source with 660 MW boiler[J]. Science & Technology Review, 2015, 33(6):69-72.
[13] 梁志宏, 李栓宝, 闫克平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制VⅡ:以2×600 MW机组为例分析讨论电除尘选型和改造[J]. 科技导报, 2016, 34(5):84-88. Liang Zhihong, Li Shuanbao, Yan Keping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants, VⅡ:ESP sizing and refitting with 2×600 MW boilers[J]. Science & Technology Review, 2016, 34(5):84-88.
[14] 沈欣军, 郑钦臻, 闫克平, 等. 电除尘器内亚微米细颗粒物动态的可视化测试[J]. 浙江大学学报:工学版, 2015, 49(5):985-992. Shen Xinjun, Zheng Qinzhen, Yan Keping, et al. Visualization measurements of submicron particle movement inside an electrostatic precipitator[J]. Journal of Zhejiang University:Engineering Science Edition, 2015, 49(5):985-992.
[15] 沈欣军, 郑钦臻, 闫克平, 等. 基于粒子成像测速法的正负电晕放电下线板式电除尘器内流场测试[J]. 高电压技术, 2014, 40(9):2757-2763. Shen Xinjun, Zheng Qinzhen, Yan Keping, et al. Measurements of flow field in wire-plate electrostatic precipitator during positive or negative corona discharge using PIV method[J]. High Voltage Engineering, 2014, 40(9):2757-2763.
[16] Ning Z Y, Li S R, Yan K P, et al. Electrode configurations inside an electrostatic precipitator and their impact on collection efficiency and flow pattern[J].The European Physical Journal D, 2016, 70(1):126-132.
[17] Ning Z Y, Podlinski J, Yan K P, et al. Electrode geometry optimiza-tion in wire-plate electrostatic precipitator and its impact on collec-tion efficiency[J]. Journal of Electrostatics, 2016, 80(1):76-84.
[18] 王仕龙. 燃煤电厂电除尘PM10和PM2.5的排放控制, Ⅱ:电除尘电源改造与PM10和PM2.5的排放[J]. 科技导报, 2014, 32(33):23-33. Wang Shilong. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants, Ⅱ:Evaluation of ESP upgrading in terms of PM10 and PM2.5 emission reduction with A 660 MW generator[J]. Science & Technology Review, 2014, 32(33):23-33.
[19] 王仕龙, 陈英, 闫克平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制, Ⅲ:电除尘电源及小分区改造与PM10和PM2.5的排放(以4×330 MW机组为例)[J]. 科技导报, 2014, 32(33):39-42. Wang Shilong, Chen Ying, Yan Keping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants, Ⅲ:Application with a 4×330 MW power plant[J]. Science & Technology Review, 2014. 32(33):39-42.
[20] 马晋辉, 王荣华, 闫克平. 燃煤电厂电除尘器的节能与提效[J]. 电力环境保护, 2008, 24(6):33-35. Ma Jinhui, Wang Ronghua, Yan Keping. Energy-saving measures of electrostatic precipitator in coal-fired power plants[J]. Electric Power Environmental Protection, 2008, 24(6):33-35.
[21] Zhu J B, Zeng Y X, Yan K P, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electro-static precipitator[J]. Journal of Electrostatics, 2012, 70(2):285-291.
[22] 胡斌, 刘勇, 杨林军, 等. 化学团聚促进电除尘脱除烟气中的PM2.5和SO3[J]. 化工学报, 2016, 67(9):3902-3909. Hu Bin, Liu Yong, Yang Linjun, et al. Simultaneous control of PM2.5 and SO3 by chemical agglomeration collaborative electrostatic precipitation[J]. CIESC Journal, 2016, 67(9):3902-3909.
[23] 龙正伟, 冯壮波, 姚强. 静电除尘器数值模拟[J]. 化工学报, 2012, 63(11):3393-3401. Long Zhengwei, Feng Zhuangbo, Yao Qiang. Numerical modeling of electrostatic precipitator[J]. CIESC Journal, 2016, 63(11):3393-3401.
[24] Huang J, Zhang F, Shi Y, et al. Investigation of a pilot-scale wet elec-trostatic precipitator for the control of sulfuric acid mist from a simu-lated WFGD system[J]. Journal of Aerosol Science, 2016, 100:38-52.
[25] Kasdi A. Computation and measurement of corona current density and V-I characteristics in wires-to-plates electrostatic precipitator[J]. Journal of Electrostatics, 2016, 81:1-8.
[26] Arif S, Branken D J, Everson R C, et al. CFD modeling of particle charging and collection in electrostatic precipitators[J]. Journal of Electrostatics, 2016, 84:10-22.
[27] Kim H J, Han B, Chang G W, et al. Performance evaluation of dry and wet electrostatic precipitators used in an oxygen-pulverized coal combustion and a CO2, capture and storage pilot plant[J]. Journal of Aerosol Science, 2014, 77:116-126.
[28] Lancereau Q, Roux J M, Achard J L. Influence of secondary flows on the collection efficiency of a cylindrical electrostatic precipitator[J]. Journal of Aerosol Science, 2013, 63(2):146-160.
[29] Noda N, Makino H. Influence of operating temperature on perfor-mance of electrostatic precipitator for pulverized coal combustion boil-er[J]. Advanced Powder Technology, 2010, 21(4):495-499.
[30] Bologa A, Paur H R, Seifert H, et al. Novel wet electrostatic precipita-tor for collection of fine aerosol[J]. Journal of Electrostatics, 2009, 67(2/3):150-153.
[31] Zhao H, Zheng C. A stochastic simulation for the collection process of fly ashes in single-stage electrostatic precipitators[J]. Fuel, 2008, 87(10/11):2082-2089.
文章导航

/