研究论文

大数据时代的石油地震勘探系统与软件平台

  • 谢玮 ,
  • 刘斌 ,
  • 刘鑫 ,
  • 李玉 ,
  • 翟焱森
展开
  • 1. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083;
    2. 中国石化石油工程地球物理有限公司胜利分公司, 东营 257086;
    3. 中国石化华北油气分公司采油气工程服务中心, 咸阳 712000
谢玮,博士研究生,研究方向为地震资料处理与解释,电子信箱:xw2008xwcs@163.com

收稿日期: 2017-02-17

  修回日期: 2017-04-27

  网络出版日期: 2017-08-16

基金资助

国家科技重大专项(2016ZX05003-003)

System and software platform of oil seismic exploration in big data era

  • XIE Wei ,
  • LIU Bin ,
  • LIU Xin ,
  • LI Yu ,
  • ZHAI Yansen
Expand
  • 1. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China;
    2. Geophysical Co., Ltd, Shengli Branch, Sinopec, Dongying 257086, China;
    3. Service Center of Oil and Gas Engineering, North China Branch, Sinopec, Xianyang 712000, China

Received date: 2017-02-17

  Revised date: 2017-04-27

  Online published: 2017-08-16

摘要

石油勘探开发精度的不断提高,促进了低频可控震源、宽频带、宽方位、高密度和高效采集技术的推广应用,石油地震勘探已进入了大数据时代,对质量监控、数据处理、数据安全存储和管理带来了新的挑战。本文分析了石油地震勘探大数据的特点,阐述了中国石化基于Hadoop分布式大数据处理系统研发的π-Frame地震数据处理解释软件平台基本构架,举例说明了该平台在石油地震勘探大数据中的应用,对其发展前景进行展望。

本文引用格式

谢玮 , 刘斌 , 刘鑫 , 李玉 , 翟焱森 . 大数据时代的石油地震勘探系统与软件平台[J]. 科技导报, 2017 , 35(15) : 57 -62 . DOI: 10.3981/j.issn.1000-7857.2017.15.008

Abstract

Low-frequency vibrator, wide-band, wide-azimuth and high-density, high-efficiency acquisition technologies have been put into wide application thanks to the continual accuracy requirement of oil exploration and development. At the same time, oil seismic exploration has entered an era of big data, leading to a series of challenges of quality control, data processing, safety storage and management. For this reason, Sinopec has developed a "π -Frame seismic data processing and interpretation integration software platform" based on the Hadoop big data architecture. In this paper, we first introduce the characteristics of big data in oil seismic exploration. Then we describe the basic framework of the π-Frame platform. Finally we illustrate the application of big data in oil seismic exploration and prospect its potential developments.

参考文献

[1] 李金诺. 浅谈石油行业大数据的发展趋势[J]. 价值工程, 2013, 32(29):172-174. Li Jinnuo. The development tendency of big data in petroleum industry[J]. Value Engineering, 2013, 32(29):172-174.
[2] Biesdorf S, Court D, Willmott P. Big data:What's your plan?[J]. Mckin-sey Quarterly, 2013(2):40-51.
[3] 方欣友. 试析油气勘探大数据化面临的挑战与机遇[J]. 环球人文地理, 2015(10):102. Fang Xinyou. Challenges and opportunities for big data in oil and gas exploration[J]. Cultural Geography, 2015(10):102.
[4] Manyika J, Chui M, Bisson P, et al. The Internet of things:Mapping the value beyond the hype[R/OL].[2017-04-27]. http://www.ifuturo.org/documentacion/Unlocking_the_potential_of_the_Internet_of_Things_Full_report.pdf.
[5] 姜睿. 大油气需要大数据[J]. 中国石油石化, 2012(24):29. Jiang Rui. Big oil and gas need big data[J]. China Petrochem, 2012(24):29.
[6] 张建. 大数据点金大油气[J]. 中国石油企业, 2014(4):69-71. Zhang Jian. Big data highlights the big oil and gas[J] China Petroleum Enterprise, 2014(4):69-71.
[7] 曹建鹏, 陈松涛, 李志萍. 云计算在石油勘探领域的应用[J]. 信息系统工程, 2012(6):89-89. Cao Jianpeng, Chen Songtao, Li Zhiping. The application of Cloud computing in petroleum exploration[J]. China Chief Information Officer News, 2012(6):89-89.
[8] 王凯, 曹建成, 王乃生, 等. Hadoop支持下的地理信息大数据处理技术初探[J]. 测绘通报, 2015(10):114-117. Wang Kai, Cao Jiancheng, Wang Naisheng, et al. Research on GIS big data computing technologies based on Hadoop[J]. Bulletin of Surveying and Mapping, 2015(10):114-117.
[9] 谭晔, 马永, 刘长军. 大数据:海量信息中"掘金"[N]. 中国石油报, 2014-05-13(03). Tan Ye, Ma Yong, Liu Changjun. Big data:panning for gold in mass information[N]. China Petroleum Daily, 2014-05-13(03).
[10] 撒利明, 甘利灯, 黄旭日, 等. 中国石油集团油藏地球物理技术现状与发展方向[J]. 石油地球物理勘探, 2014, 49(3):611-626. Sa Liming, Gan Lideng, Huang Xuri, et al. The status and development direction of reservoir geophysics in CNPC[J]. Oil Geophysical Prospecting, 2014, 49(3):611-626.
[11] 李存琛. 海量数据分布式存储技术的研究与应用[D]. 北京:北京邮电大学, 2012. Li Cunchen. Research on distributed storage technology based on mass data[D]. Beijing:Beijing University of Posts and Telecommunications, 2012.
[12] 马召贵, 赵改善, 武港山, 等. 基于CPU+GPU联合计算真地表叠前时间偏移实用化研究[J]. 石油地球物理勘探, 2014, 49(3):530-537. Ma Zhaogui, Zhao Gaishan, Wu Gangshan, et al. Kirchhoff pre-stack time migration of complex surface data on CPU + GPU[J]. Oil Geophysical Prospecting, 2014, 49(3):530-537.
[13] 车永刚, 张理论, 王勇献, 等. Intel多核与集成众核上CFD程序的OpenMP性能分析[J]. 计算机科学与探索, 2015, 9(10):1153-1162. Che Yonggang, Zhang Lilun, Wang Yongxian, et al. OpenMP performance analysis of CFD application on Intel multicore and manycore architectures[J]. Journal of frontiers of computer science and technology, 2015, 9(10):1153-1162.
[14] 王喜双, 赵邦六, 董世泰, 等. 油气工业地震勘探大数据面临的挑战及对策[J]. 中国石油勘探, 2014, 19(4):43-47. Wang Xishuang, Zhao Bangliu, Dong Shitai, et al. Challenges and strategies for large seismic exploration data of oil and gas industry[J]. China petroleum exploration, 2014, 19(4):43-47.
[15] 程学旗, 靳小龙, 杨婧, 等. 大数据技术进展与发展趋势[J]. 科技导报, 2016, 34(14):49-59. Cheng Xueqi, Jin Xiaolong, Yang Jing, et al. Technological progress and trends of big data[J]. Science & Technology Review, 2016, 34(14):49-59.
[16] 刘国峰, 刘洪, 王秀闽, 等. Kirchhoff积分时间偏移的两种走时计算及并行算法[J]. 地球物理学进展, 2009, 24(1):131-136. Liu Guofeng, Liu Hong, Wang Xiumin, et al. Two kinds of traveling time computation and parallel computing methods of Kirchhoff migration[J]. Progress in Ggeophysics, 2009, 24(1):131-136.
[17] 亢永敢, 赵改善, 魏嘉, 等. 基于Hadoop的Kirchhoff叠前时间偏移并行算法[J]. 石油地球物理勘探, 2015, 50(6):1213-1218. Kang Yonggan, Zhao Gaishan, Wei Jia, et al. Parallel algorithms of Kirchhoff prestack time migration based on Hadoop[J]. Oil Geophysical Prospecting, 2015, 50(6):1213-1218.
[18] Zhao G. Keynote:Seismic processing and interpretation platform in the big data era[C]. Workshop:High Performance Computing, Beijing, China, November 14-16, 2016.
[19] 李婷婷, 王钊, 马世忠, 等. 地震属性融合方法综述[J]. 地球物理学进展, 2015(1):378-385. Li Tingting, Wang Zhao, Ma Shizhong, et al. Summary of seismic attributes fusion method[J]. Progress in Geophysics, 2015(1):378-385.
[20] 尹力, 方伍宝, 李振春, 等. 3D声波全波形反演计算策略研究[C]//2014年中国地球科学联合学术年会论文集. 北京:中国地球物理学会, 2014. Yin Li, Fang Wubao, Li Zhenchun, et al. Research on computing strategies of 3D acoustic full waveform inversion[C]//Proceedings of the joint annual meeting of the Earth Sciences in China in 2014. Beijing:Chinese Geophysical Society, 2014.
文章导航

/