专题论文

罕见病诊断的相关技术及发展

  • 王远玭 ,
  • 胡晓敏 ,
  • 弓孟春 ,
  • 凌超
展开
  • 1. 中国医学科学院罕见病研究中心, 北京 100730;
    2. 中国医学科学院北京协和医院中心实验室, 北京 100730;
    3. 中国医学科学院北京协和医院临床遗传学实验室, 北京 100730
王远玭,博士研究生,研究方向为临床医学,电子信箱:373910768@qq.com

收稿日期: 2017-05-25

  修回日期: 2017-07-31

  网络出版日期: 2017-08-26

基金资助

国家重点研发计划项目(2016YFC0901500);上海市出生缺陷防治重点实验室开放课题基金(16DZKF1007);国家卫生计生委2016年信息化与统计项目

Technologies and development of rare disease diagnosis

  • WANG Yuanpin ,
  • HU Xiaomin ,
  • GONG Mengchun ,
  • LING Chao
Expand
  • 1. Rare Disease Research Center, Chinese Academy of Medical Sciences, Beijing 100730, China;
    2. Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
    3. Genetics Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China

Received date: 2017-05-25

  Revised date: 2017-07-31

  Online published: 2017-08-26

摘要

罕见病大多数是遗传性疾病,其发病率低,种类繁多且表型复杂多样,导致临床上难以进行及时和准确的诊断。随着分子遗传学、分子诊断技术、基因测序技术及组学技术的进步,罕见病诊断取得了重大发展。在传统基因检测技术基础上,二代测序技术迅速发展并广泛应用于罕见病的诊断和研究中,三代测序技术也展示出潜在应用价值。虽然传统的酶学检测技术仍占有重要地位,但已不能满足罕见病诊断的需求;蛋白质组学、代谢组学的崛起,使多种罕见病的准确诊断成为可能。同时结合分子影像技术和生物信息技术,计算机辅助诊断也展现出了广泛的应用前景。

本文引用格式

王远玭 , 胡晓敏 , 弓孟春 , 凌超 . 罕见病诊断的相关技术及发展[J]. 科技导报, 2017 , 35(16) : 26 -30 . DOI: 10.3981/j.issn.1000-7857.2017.16.003

Abstract

Most of rare diseases are hereditary diseases, characterized by low incidence, numerous varieties and diverse phenotypes, and therefore it is difficult to diagnose rare diseases timely and accurately in clinical practice. With the advances in the molecular genetics, the molecular diagnostic techniques, and the gene sequencing and omics techniques, a significant progress has been made in the diagnosis of rare diseases in recent years. On the basis of traditional gene detection techniques, the next-generation sequencing technology has been rapidly developed and widely used in the diagnosis and the research of rare diseases. The next-generation sequencing technology is costeffective and of high capacity over the traditional gene tests, and is well developed for the clinical use. The third generation sequencing also shows a potential diagnostic value. Although the traditional enzymatic detection techniques play an important role in the diagnosis of rare diseases, they fail to meet the surging diagnostic demands. Studies demonstrate that the rise of the proteomics and the metabolomics enables an accurate diagnosis of a variety of rare diseases. The computer-assisted initial diagnosis also sees a bright future, combined with the molecular imaging and the bio-information technologies. Technological advances have enhanced the ability to diagnose rare diseases to a great extent.

参考文献

[1] Rath A, Olry A, Dhombres F, et al. Representation of rare diseases in health information systems:The orphanet approach to serve a wide range of end users[J]. Human Mutation, 2012, 33(5):803-808.
[2] Anderson M, Elliott E J, Zurynski Y A. Australian families living with rare disease:Experiences of diagnosis, health services use and needs for psychosocial support[J]. Orphanet Journal of Rare Diseases, 2013, 8:22.
[3] Amberger J S, Bocchini C A, Schiettecatte F, et al. OMIM.org:Online mendelian inheritance in man (OMIM(R)), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Research, 2015, 43(Data-base issue):D789-D798.
[4] Cui Y, Han J. Defining rare diseases in China[J]. Intractable and Rare Diseases Research, 2017, 6(2):148-149.
[5] Wang J B, Guo J J, Yang L, et al. Rare diseases and legislation in Chi-na[J]. Lancet, 2010, 375(9716):708-709.
[6] Korf B R, Rehm H L. New approaches to molecular diagnosis[J]. Jour-nal of the American Medical Association, 2013, 309(14):1511-1521.
[7] Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-termi-nating inhibitors[J]. Proceedings of the National Academy of Sciences, 1977, 74(12):5463-5467.
[8] Genomes P C, Abecasis G R, Auton A, et al. An integrated map of ge-netic variation from 1092 human genomes[J]. Nature, 2012, 491(7422):56-65.
[9] van Dijk E L, Auger H, Jaszczyszyn Y, et al. Ten years of next-genera-tion sequencing technology[J]. Trends in Genetics, 2014, 30(9):418-426.
[10] Danielsson K, Mun L J, Lordemann A, et al. Next-generation sequenc-ing applied to rare diseases genomics[J]. Expert Review of Molecuar Diagnosis, 2014, 14(4):469-487.
[11] Nguyen M T, Charlebois K. The clinical utility of whole-exome se-quencing in the context of rare diseases-the changing tides of medical practice[J]. Clinical Genetics, 2015, 88(4):313-319.
[12] Stark Z, Tan T Y, Chong B, et al. A prospective evaluation of wholeexome sequencing as a first-tier molecular test in infants with suspect-ed monogenic disorders[J]. Genetics in Medicine, 2016, 18(11):1090-1096.
[13] Brown T L, Meloche T M. Exome sequencing a review of new strate-gies for rare genomic disease research[J]. Genomics, 2016, 108(3-4):109-114.
[14] Meynert A M, Ansari M, FitzPatrick D R, et al. Variant detection sen-sitivity and biases in whole genome and exome sequencing[J]. BMC Bioinformatics, 2014, 15:247.
[15] Aparisi M J, Aller E, Fuster-Garcia C, et al. Targeted next generation sequencing for molecular diagnosis of Usher syndrome[J]. Orphanet Journal of Rare Diseases, 2014, 9:168.
[16] Duan S, Mi S, Zhang W, et al. Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes[J]. RNA Biology, 2009, 6(4):412-425.
[17] Salvatore M, Magrelli A, Taruscio D. The role of microRNAs in the bi-ology of rare diseases[J]. International Journal of Molecuar Sciences, 2011, 12(10):6733-6742.
[18] Riedmaier I, Pfaffl M W. Transcriptional biomarkers-high throughput screening, quantitative verification, and bioinformatical validation methods[J]. Methods, 2013, 59(1):3-9.
[19] Wang Y, Yang Q, Wang Z. The evolution of nanopore sequencing[J]. Frontiers in Genetics, 2014, 5:449.
[20] Quick J, Loman N J, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance[J]. Nature, 2016, 530(7589):228-232.
[21] Lu H, Giordano F, Ning Z. Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics Bioinformatics, 2016, 14(5):265-279.
[22] Roos D, de Boer M. Molecular diagnosis of chronic granulomatous dis-ease[J]. Clinical and Experimental Immunology, 2014, 175(2):139-149.
[23] Csorba K, Schmidt S, Florea F, et al. Development of an ELISA for sensitive and specific detection of IgA autoantibodies against BP180 in pemphigoid diseases[J]. Orphanet Journal of Rare Diseases, 2011, 6(1):31.
[24] Gulbakan B, Ozgul R K, Yuzbasioglu A, et al. Discovery of biomark-ers in rare diseases:innovative approaches by predictive and personal-ized medicine[J]. EPMA Journal, 2016, 7(1):24.
[25] Royal V, Quint P, Leblanc M, et al. IgD heavy-chain deposition dis-ease:detection by laser microdissection and mass spectrometry[J]. Journal of American Society of Nephrology, 2015, 26(4):784-790.
[26] Ayoglu B, Chaouch A, Lochmuller H, et al. Affinity proteomics within rare diseases:a BIO-NMD study for blood biomarkers of muscular dystrophies[J]. EMBO Molecular Medicine, 2014, 6(7):918-936.
[27] Norman R, Haas M, Wilcken B. International perspectives on the costeffectiveness of tandem mass spectrometry for rare metabolic condi-tions[J]. Health Policy, 2009, 89(3):252-260.
[28] Piras D, Locci E, Palmas F, et al. Rare disease:a focus on metabolo-mics[J]. Expert Opinion on Orphan Drugs, 2016, 4(12):1229-1237.
[29] Bekiesinska-Figatowska M. Imaging in the diagnosis of rare diseases[J]. Developmental Period Medicine, 2015,19(4):407-412.
[30] Alves R, Pinol M, Vilaplana J, et al. Computer-assisted initial diagno-sis of rare diseases[J]. PeerJ, 2016, 4(Suppl 1):e2211.
文章导航

/