[1] World Health Organization. Priority medicines for Europe and the world:A public health approach to innovation[EB/OL].[2017-06-20]. http://101.96.8.164/www.who.int/medicinedocs/documents/s16368e/s16368e.pdf.
[2] Valdez R, Grosse S D, Khoury M J. The need for a next-generation public health response to rare diseases[J]. Genetics in Medicine, 2016, 19:489-490.
[3] Trifonova O, Lokhov P, Archakov A. Postgenomics diagnostics:metabo-lomics approaches to human blood profiling[J]. Omics, 2013, 17(11):550-559.
[4] Klonoff D C. Precision medicine for managing diabetes[J]. Journal of Di-abetes Science and Technology, 2015, 9(1):3-7.
[5] Groop L. Genetics and neonatal diabetes:towards precision medicine[J]. Lancet, 2015, 386(9997):934-935.
[6] De Franco E, Flanagan S E, Houghton J A, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes:an international cohort study[J]. Lancet, 2015, 386(9997):957-963.
[7] Bremond-Gignac D, Lewandowski E, Copin H. Contribution of electron-ic medical records to the management of rare diseases[J]. Biomed Re-search International, 2015, doi:10.1155/2015/954283.
[8] Moline J, Eng C. Multiple endocrine neoplasia type 2:an overview[J]. Genetics in Medicine, 2011, 13(9):755-764.
[9] Krampitz G W, Norton J A. RET gene mutations (genotype and pheno-type) of multiple endocrine neoplasia type 2 and familial medullary thy-roid carcinoma[J]. Cancer, 2014, 120(13):1920-1931.
[10] Kloos R T, Eng C, Evans D B, et al. Medullary thyroid cancer:Man-agement guidelines of the American Thyroid Association[J]. Thyroid, 2009, 19(6):565-612.
[11] Machens A. Early malignant progression of hereditary medullary thy-roid cancer[J]. New England Journal of Medicine, 2004, 350(9):943.
[12] Shepet K, Alhefdhi A, Lai N, et al. Hereditary medullary thyroid can-cer:age-appropriate thyroidectomy improves disease-free survival[J]. Annals of Surgical Oncology, 2013, 20(5):1451-1455.
[13] Cheng J B, Levine M A, Bell N H, et al. Genetic evidence that the hu-man CYP2R1 enzyme is a key vitamin D 25-hydroxylase[J]. PNAS, 2004, 101(20):7711-7715.
[14] Demir K, Kattan W E, Zou M, et al. Novel CYP27B1 gene mutations in patients with vitamin d-dependent rickets type 1A[J]. PLoS One, 2015, 10(7):e0131376.
[15] Hu W W, Ke Y H, He J W, et al. A novel compound mutation of CYP27B1 in a Chinese family with vitamin D-dependent rickets type 1A[J]. Journal of Pediatric Endocrinology and Metabolism, 2014, 27(3/4):335-341.
[16] Vaxillaire M, Froguel P. Monogenic diabetes:Implementation of trans-lational genomic research towards precision medicine[J]. Journal of Di-abetes, 2016, 8(6):782-795.
[17] Clayton R N, Raskauskiene D, Reulen R C, et al. Mortality and mor-bidity in Cushing's disease over 50 years in Stoke-on-Trent, UK:Au-dit and meta-analysis of literature[J]. The Journal of Clinical Endocri-nology and Metabolism, 2011, 96(3):632-642.
[18] Kaiser U B. Cushing's disease:Towards precision medicine[J]. Cell Re-search, 2015, 25(6):649-650.
[19] Wasim M, Awan F R, Najam S S, et al. Role of leptin deficiency, inef-ficiency, and leptin receptors in obesity[J]. Biochemical Genetics, 2016, 54(5):565-572.
[20] He J, Fang Y, Lin X, et al. The relationship between gene polymor-phism of leptin and leptin receptor and growth hormone deficiency[J]. Medical Science Monitor, 2016, 22:642-646.
[21] Paz-Filho G, Mastronardi C, Delibasi T, et al. Congenital leptin defi-ciency:Diagnosis and effects of leptin replacement therapy[J]. Arquiv-os Brasileiros de Endocrinologia e Metabologia, 2010, 54(8):690-697.
[22] Ahmadzadeh A, Ghods E, Mojarrad M, et al. Study on KAL1 gene mu-tations in idiopathic hypogonadotropic hypogonadism patients with xlinked recessive inheritance[J]. International Journal of Molecular and Cellular Medicine, 2015, 4(3):152-159.
[23] Razali N N, Hwu T T, Thilakavathy K. Phosphate homeostasis and ge-netic mutations of familial hypophosphatemic rickets[J]. Journal of Pe-diatric Endocrinology and Metabolism, 2015, 28(9/10):1009-1017.
[24] Thomas I H, DiMeglio L A. Advances in the classification and treat-ment of osteogenesis imperfecta[J]. Current Osteoporosis Reports, 2016, 14(1):1-9.
[25] Marshall C, Lopez J, Crookes L, et al. A novel homozygous variant in SERPINH1 associated with a severe, lethal presentation of osteogene-sis imperfecta with hydranencephaly[J]. Gene, 2016, 595(1):49-52.
[26] Marini J C, Reich A, Smith S M. Osteogenesis imperfecta due to muta-tions in non-collagenous genes:lessons in the biology of bone forma-tion[J]. Current Opinion in Pediatrics, 2014, 26(4):500-507.
[27] Laine C M, Joeng K S, Campeau P M, et al. WNT1 mutations in earlyonset osteoporosis and osteogenesis imperfecta[J]. New England Jour-nal of Medicine, 2013, 368(19):1809-1816.
[28] Vengerovskii A I, Khlusov I A, Nechaev K A. Molecular mechanisms of action of bisphosphonates and strontium ranelate[J]. Eksperimental-naia i Klinicheskaia Farmakologiia, 2014, 77(9):43-46.
[29] Sillero M A, de Diego A, Tavares J E, et al. Synthesis of ATP deriva-tives of compounds of the mevalonate pathway (isopentenyl di-and tri-phosphate; geranyl di-and triphosphate, farnesyl di-and triphosphate, and dimethylallyl diphosphate) catalyzed by T4 RNA ligase, T4 DNA ligase and other ligases Potential relationship with the effect of bisphosphonates on osteoclasts[J]. Biochemical Pharmacology, 2009, 78(4):335-343.
[30] Marozik P, Mosse I, Alekna V, et al. Association between polymor-phisms of VDR, COL1A1, and LCT genes and bone mineral density in Belarusian women with severe postmenopausal osteoporosis[J]. Me-dicina (Kaunas, Lithuania), 2013, 49(4):177.
[31] Ma M, Chen X, Lu L, et al. Identification of crucial genes related to postmenopausal osteoporosis using gene expression profiling[J]. Aging Clinical and Experimental Research, 2015, 28(6):1-8.
[32] Spegel P, Ekholm E, Tuomi T, et al. Metabolite profiling reveals nor-mal metabolic control in carriers of mutations in the glucokinase gene (MODY2)[J]. Diabetes, 2013, 62(2):653-661.
[33] Pawlyk A C, Giacomini K M, McKeon C, et al. Metformin pharmacoge-nomics:Current status and future directions[J]. Diabetes, 2014, 63(8):2590-2599.
[34] Kahn S E, Haffner S M, Heise M A, et al. Glycemic durability of rosi-glitazone, metformin, or glyburide monotherapy[J]. New England Jour-nal of Medicine, 2006, 355(23):2427-2443.
[35] Cook M N, Girman C J, Stein P P, et al. Initial monotherapy with ei-ther metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with Type 2 diabetes in UK prima-ry care[J]. Diabetic Medicine, 2007, 24(4):350-358.
[36] Bailey C J, Turner R C. Metformin[J]. New England Journal of Medi-cine, 1996, 334(9):574-579.
[37] Group T S, Zeitler P, Hirst K, et al. A clinical trial to maintain glyce-mic control in youth with type 2 diabetes[J]. New England Journal of Medicine, 2012, 366(24):2247-2256.
[38] Morris A D, Boyle D I, MacAlpine R, et al. The diabetes audit and re-search in Tayside Scotland (DARTS) study:Electronic record linkage to create a diabetes register. DARTS/MEMO Collaboration[J]. British Medical Journal, 1997, 315(7107):524-528.
[39] Reitman M L, Schadt E E. Pharmacogenetics of metformin response:A step in the path toward personalized medicine[J]. Journal of Clinical Investment, 2007, 117(5):1226-1229.
[40] van Leeuwen N, Nijpels G, Becker M L, et al. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes:a replication and meta-analysis of five cohorts[J]. Dia-betologia, 2012, 55(7):1971-1977.
[41] Tkac I. Replication of the association of gene variant near ATM and response to metformin[J]. Pharmacogenomics, 2012, 13(12):1331-1332.
[42] Zhou K, Bellenguez C, Spencer C C, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 di-abetes[J]. Nature Genetics, 2011, 43(2):117-120.
[43] Schnorr S L, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers[J]. Nature Communications, 2014, 5:3654.
[44] Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome[J]. Nature Biotechnology, 2014, 32(8):834-841.
[45] Kolmeder C A, Salojarvi J, Ritari J, et al. Faecal metaproteomic analy-sis reveals a personalized and stable functional microbiome and limit-ed effects of a probiotic intervention in adults[J]. PLoS One, 2016, 11(4):e0153294.
[46] Sonnenburg J L, Backhed F. Diet-microbiota interactions as modera-tors of human metabolism[J]. Nature, 2016, 535(7610):56-64.
[47] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418):55-60.
[48] Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031.
[49] Liu W, Crott J W, Lyu L, et al. Diet-and genetically-induced obesity produces alterations in the microbiome, inflammation and wnt pathway in the intestine of Apc +/1638N mice:Comparisons and contrasts[J]. Journal of Cancer, 2016, 7(13):1780-1790.
[50] Marotz C A, Zarrinpar A. Treating obesity and metabolic syndrome with fecal microbiota transplantation[J]. The Yale Journal of Biology and Medicine, 2016, 89(3):383-388.
[51] Gulcher J, Stefansson K. Clinical risk factors, DNA variants, and the development of type 2 diabetes[J]. New England Journal of Medicine, 2009, 360(13):1360-1361.
[52] Cai L, Wu H, Li D, et al. Type 2 diabetes biomarkers of human gut microbiota selected via iterative sure independent screening method[J]. PLoS One, 2015, 10(10):e0140827.
[53] Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal micro-biota from lean donors increases insulin sensitivity in individuals with metabolic syndrome[J]. Gastroenterology, 2012, 143(4):913-916
[54] Chambliss A B, Chan D W. Precision medicine:From pharmacogenom-ics to pharmacoproteomics[J]. Clinical Proteomics, 2016, 13(1):25.
[55] Chen P L, Shih S R, Wang PW, et al. Genetic determinants of antithy-roid drug-induced agranulocytosis by human leukocyte antigen geno-typing and genome-wide association study[J]. Nature Communications, 2015, 6:7633.
[56] Hallberg P, Eriksson N, Ibanez L, et al. Genetic variants associated with antithyroid drug-induced agranulocytosis:A genome-wide associ-ation study in a European population[J]. Lancet Diabetes Endocrinolo-gy, 2016, 4(6):507-516.
[57] 弓孟春, 王慧君, 卢宇蓝, 等. 药物基因组学临床部署的顶层设计[J]. 中国循证儿科杂志, 2016, 11(3):161-167. Gong Mengchun, Zou Wenhao, et al. Top design in clinical procedure of pharmacogenomics[J]. Chinese Journal of Evidence Based Pediat-rics, 2016, 11(3):198-206.
[58] Hawgood S, Hook-Barnard I G, O'Brien T C, et al. Precision medi-cine:Beyond the inflection point[J]. Science Translational Medicine, 2015, 7(300):300ps17.
[59] Li L, Cheng W Y, Glicksberg B S, et al. Identification of type 2 diabe-tes subgroups through topological analysis of patient similarity[J]. Sci-ence Translational Medicine, 2015, 7(311):311ra174.
[60] Bush W S, Oetjens M T, Crawford D C. Unravelling the human ge-nome-phenome relationship using phenome-wide association studies[J]. Nature Reviews Genetics, 2016, 17(3):129-145.
[61] Rastegar-Mojarad M, Ye Z, Kolesar JM, et al. Opportunities for drug repositioning from phenome-wide association studies[J]. Nature Bio-technology, 2015, 33(4):342-345.
[62] Eng C. Mendelian genetics of rare-and not so rare-cancers[J]. Annals of the New York Academy of Sciences, 2010, 1214(1):70-82.
[63] Turgeon J, Michaud V. Clinical decision support systems:Great prom-ises for better management of patients' drug therapy[J]. Expert Opin-ion on Drug Metabolism and Toxicology, 2016, 12(9):1-3.