[1] Chrisey D, Gamota D, Taylor D. Materials development for direct write technologies[C]//MRS Symposium Proceedings. Cambridge:Cambridge Core, 2000:624.
[2] Waldvogel J M, Poulikakos D, Wallace D B, et al. Transport phenome-na in picoliter size solder droplet dispension[J]. Journal of Heat Trans-fer, 1996, 118(1):148-156.
[3] Wallace D B, Hayes D J. Solder jet technology update[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 21(1):1-4.
[4] Szczech J, Megaridis C, Gamota D, et al. Fine-line conductor manufac-turing using drop-on-demand PZT printing technology[J]. IEEE Trans-actions on Electronics Packaging Manufacturing, 2002, 25(1):26-33.
[5] Optomec. Production-grade 3d printing[EB/OL].[2017-06-05]. https://www.optomec.com/.
[6] 李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6):129-135. Li Dichen, He Jiankang, Tian Xiaoyong, et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Journalof Mechanical Engineering, 2013, 49(6):129-135.
[7] 兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印[J]. 中国科学(技术科学), 2015, 45(9):919-939. Lan Hongbo, Li Dicheng, Lu Bingheng. Micro-and nanoscale 3D printing[J]. Scientia Sinica(Science Technology), 2015, 45(9):919-939.
[8] Low T, Chaves A, Caldwell J, et al. Lightweight mechanical metamateri-als with tunable negative thermal expansion[J]. Physical Review Letters, 2016, 117(17-21):175901.
[9] Gamota D, Brazis P, Kalyanasundaram K, et al. Printed organic and mo-lecular electronics[M]. New York:Springer, 2004.
[10] Rogers J, Bao Z, Makhij A, et al. Printing process suitable for reel-toreel production of high-performance organic transistors and circuits[J]. Advanced Materials,1999, 11(9):741-745.
[11] Bao Z, Rogers J, Katz H. Printable organic and polymeric semiconduct-ing materials and devices[J]. Journal of Materials Chemistry,1999, 9(9):1895-1904.
[12] Kinder L, Karnicki J, Petroff P, et al. Structure ordering and enhanced mobility in organic polymer thin film transistor[J]. Synthetic Metals, 2004, 146(2):181-185.
[13] Chang J, Sun B, Breiby D, et al. Enhanced mobility of poly(3-hexyl-thiophene) transistors by spin-coating from high-boiling-point solvents[J]. Chemistry of Materials, 2004, 16(23):4772-4776.
[14] Veres J, Ogier S, Leeming S, et al. Low-k insulators as the choice of dielectric in organic field effect transistors[J]. Advanced Functional Materials, 2003, 13(3):199-204.
[15] Suganuma K. Introduction to printed electronics[M]. New York:Spring-er, 2014.
[16] Zhang J, Shmagin I, Skinner J. et al. Material systems used by micro dispensing and ink jetting technologies[C]//Materials Research Society Symposium Proceeding. Cambridge:Cambridge Core, 2000, 624:41-48.
[17] Ostfeld A, Deckman I, Gaikwad A, et al. Screen printed passive com-ponents for flexible power electronics[J]. Scientific Reports, 2015(5):15959.
[18] 张婕, 姜琳, Gamota D, 印刷电子技术[J]. 半导体制造, 2008, 9(7):54-58. Zhang Jie, Jiang Lin, Gamota D. Printing electronic technology[J]. Semiconductor Manufacturing, 2008, 9(7):54-58.
[19] Jiang L, Zhang J, Gamota D, et al. Enhancement of the field-effect mobility of solution processed organic thin film transistors by surface modification of the dielectric[J]. Organic Electronics, 2010, 11(2):344-350.
[20] Rasul A, Zhang J, Gamota D, et al. Flexible high capacitance nano-composite gate insulator for printed organic field-effect transistors[J]. Thin Solid Films, 2010, 518(23):7024-7028.
[21] Hou X, Ng C, Zhang J, et al. Polymer nanocomposite dielectric based on P(VDF-TrFE)/PMMA BaTiO3 for TIPs-Pentacene OFETs[J]. Or-ganic Electronics, 2015(17):247-252.
[22] Kraft U, Sejfic M, Kang M, et al. Flexible low voltage organic comple-mentary circuits finding the optimum combination of semiconductors and monolayer gate dielectrics[J]. Advanced Materials, 2015, 27(2):207-214.
[23] Yu G, Gao J, Hummelen J, et al. Polymer photovoltaic cells:En-hanced efficiencies via a network of internal donor-acceptor hetero-junctions[J]. Science, 1995, 270(5243):1789-1791.
[24] Søndergaard R, Hösel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells[J]. Materials Today, 2012, 15(1-2):36-49.
[25] Eugenio C. Applications of organic and printed electronics:A technolo-gy enabled revolution[M]. New York:Springer, 2013.
[26] 宋延林. 从活字印刷到印刷制造[J]. 印刷工业, 2016(10):34-35. Song Yanlin. From movable type to printing manufacturing[J]. Printing Manufacturing, 2016(10):34-35.
[27] Karsa D. Surfactants in polymers, coatings, inks and adhesives[M]. United Kingdom:Taylor & Francis, 2003.
[28] Kim J, Kumar R, Bandodkar A, et al. Advanced materials for printed wearable electronchemical devices:A review[J]. Advanced Electronic Materials, 2017, 3(1):1600260.
[29] Harrey P, Evans P, Ramsey B, et al. Interdigitated capacitors by offset lithography[J]. Journal of Electronics Manufacturing, 2000, 10(1):69-77.
[30] 张乃柏, 郭秋泉, 杨军. 数字打印柔性电子器件的研究进展[J]. 中国科学(物理学力学天文学), 2016:46(4):044608. Zhang Naibo, Guo Qiuquan, Yang Jun. The development of digital printing technologies for flexible electronics devices[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2016:46(4):044608.
[31] Nathan A, Ahnood A, Cole M T, et al. Flexible electronics:The next ubiquitous platform[J]. Proceedings of the IEEE, 2012, 100(5):1486-1517.
[32] Wang X, Liu J. Recent advancements in liquid metal flexible printed electronics:Properties, technologies, and applications[J]. Microma-chines, 2016, 7(12):206.
[33] Rim Y, Bae S, Chen H, et al. Recent process in materials and devices toward printable and flexible sensors[J]. Advanced Materials, 2016, 28(22):4415-4440.
[34] Gao M, Li L, Song Y. Inkjet printing wearable electronic devices[J]. Journal of Material Chemistry C, 2017, 5(12):2971-2993.
[35] Wen Y, Xu J. Scientific importance of water-processable PEDOT-PSS and preparation, challenge and new application in sensors of its film electrode:A review[J]. Journal of Polymer Science:Polymer Chemis-try, 2017, 55(7):1121-1150.
[36] 孙雅洲, 梁迎春, 程凯. 微米和中间尺度机械制造[J]. 机械工程学报, 2004, 40(5):1-6. Sun Yazhou, Liang Yingchun, Cheng Kai. Micro-scale and mesoscale mechanical manufacturing[J]. Chinese Mechanical Engineering, 2004, 40(5):1-6.
[37] Yang H, Pan C, Chou M. Ultra-fine machining tool/mods by liga tech-nology[J]. Journal of Micromechanics and Microengineering, 2001, 11(2):94-99
[38] Weck M, Fischer S, Vos M. Fabrication of microcomponents using ul-traprecision machine tools[J]. Nanotechnology, 1997, 8(3):145-148.
[39] Zheng X, Lee H, Weisgraber T. et al. Ultralight ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190):1373-1377.
[40] Zheng X, Smith W, Jackson J. et al. Multiscale metallic metamaterials[J]. Nature Material, 2016, 15(10):1100-1106.
[41] Wu Lingling, Tian Xiaoyong, Ma Huifeng. et al. Broadband flattened luneburg lens with ultra-wide angle based on a liquid medium[J]. Ap-plied Physics Letters, 2013, 102(7):074103.
[42] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程,2017, 44(1):69-76. Tian Xiaoyong, Yin Lixian, Li Dichen. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronics Engineering, 2017, 44(1):69-76.
[43] Wang X, Guo Q, Cai X, et al. Initiator-integrated 3D printing enables the formation of complex metallic architectures[J]. ACS Applied Mate-rials & Interfaces, 2014, 6(4):2583-2587.
[44] Kotz F, Arnold K, Bauer W. et al. Three-dimensional printing of trans-parent fused silica glass[J]. Nature, 2017, 544(7650):337-339.
[45] Eckel Z, Zhou C, Martin J. et al. Additive manufacturing of polymerderived ceramics[J]. Science, 2016, 351(6268):58-62.
[46] Duoss E, Weisgraber T, Hearon K. et al. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness[J]. Ad-vanced Functional Materials, 2014, 24(31):4905-4913.
[47] Lü J, Gong Z, He Z. et al. 3D Printing of mechanically durable super-hydrophobic porous membrane for oil-water separation[J]. Journal of Material Chemistry A, 2017(5):12435-12444.
[48] Sun K, Wei T, Ahn B. et al. 3D printing of interdigitated Li-ion micro-battery architectures[J]. Advanced Materials, 2013, 25(33):4539-4543.
[49] Raney J, Lewis J. Printing mesoscale architectures[J]. MRS Bulletin, 2015, 40(11):943-950.
[50] Nguyen D, Meyers C, Yee T. et al. 3D-printed transparent glass[J]. Advanced Materials, 2017, 29(26):1701181.
[51] Lind J, Busbee T, Valentine A. et al. Instrumented cardiac microphysi-ological devices via multimaterial three-dimensional printing[J]. Na-ture Materials, 2017, 16(3):303-308.