专题论文

有机薄膜晶体管的发展现状、机遇与挑战

  • 冯林润 ,
  • 唐伟 ,
  • 郭小军
展开
  • 1. 上海交通大学电子信息与电气工程学院, 上海 200240;
    2. 英国NeuDrive有限公司, 英国柴郡 SK10 4TG
冯林润,博士,研究方向为有机薄膜晶体管,电子信箱:linrun.feng@neudrive.com

收稿日期: 2017-06-25

  修回日期: 2017-08-01

  网络出版日期: 2017-09-18

Current status, opportunities, and challenges of organic thin-film transistors

  • FENG Linrun ,
  • TANG Wei ,
  • GUO Xiaojun
Expand
  • 1. Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. NeuDrive Limited, Cheshire SK10 4TG, UK

Received date: 2017-06-25

  Revised date: 2017-08-01

  Online published: 2017-09-18

摘要

由于有机薄膜晶体管(OTFT)可采用低温低成本印刷工艺按需加工,及其良好的机械柔韧性和不断提升的器件性能,获得了学术界和产业界的密切关注,在包括柔性显示和传感器等诸多领域展现了巨大的应用潜力,但目前OTFT离大规模产业化还存在一定距离。结合市场实际需求,对OTFT现阶段的发展现状、机遇与存在的挑战进行总结。

本文引用格式

冯林润 , 唐伟 , 郭小军 . 有机薄膜晶体管的发展现状、机遇与挑战[J]. 科技导报, 2017 , 35(17) : 37 -45 . DOI: 10.3981/j.issn.1000-7857.2017.17.004

Abstract

Organic thin-film transistors (OTFTs) have received worldwide academic and industrial attention owing to their attractive features of low cost, low temperature drop-on-demand printable processes, superior intrinsic mechanical flexibility, and sustainable performance improvement. These features of OTFT bring them great potential for a wide range of new applications including flexible display and sensors. However, even with significant technological advances, there is still a gap for the OTFT technology to be widely commercially adopted. Based on actual application demand, this paper provides a comprehensive review of the OTFT development, and discuss its current status, opportunities and challenges.

参考文献

[1] Moore's law[EB/OL].[2017-05-31]. https://en.wikipedia.org/wiki/Moore%27s_law.
[2] Nathan A, Ahnood A, Lai J, et al. Large area electronics[M]//Burghartz J. Guide to State-of-the-Art Electron Devices. New York:Wiley-IEEE Press, 2013:328.
[3] Street R A. Thin-film transistors[J]. Advanced Materials, 2010, 21(20):2007-2022.
[4] Kuo Y. Thin film transistors:Amorphous silicon thin film transistor[M]. The Netherlands:Springer, 2004.
[5] Brotherton S D. Introduction to thin film transistors:Physics and tech-nology of TFTs[M]. Switzerland:Springer International Publishing, 2013.
[6] Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semi-conductors[J]. Nature, 2004, 432(4016):488-492.
[7] Arias A C, Mackenzie J D, McCulloch I, et al. Materials and applica-tions for large area electronics:Solution-based approaches[J]. Chemical Reviews, 2010, 110(1):3-24.
[8] Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solution-pro-cessed organic field-effect transistors[J]. Nature Communications, 2011, 3(4):1259.
[9] Fukuda K, Takeda Y, Yoshimura Y, et al. Fully-printed high-perfor-mance organic thin-film transistors and circuitry on one-micron-thick polymer films[J]. Nature Communications, 2014, 5:4147.
[10] Sirringhaus H. Organic field-effect transistors:The path beyond amor-phous silicon[J]. Advanced Materials, 2014, 26(9):1319-1935.
[11] Klauk H. Organic thin-film transistors[J]. Chemical Society Reviews, 2010, 39(7):2643-2666.
[12] Guo Y, Yu G, Liu Y. Functional organic field-effect transistors[J]. Ad-vanced Materials, 2010, 22(40):4427-4447.
[13] Lin P, Yan F. Organic Thin-film transistors for chemical and biologi-cal sensing[J]. Advanced Materials, 2012, 24(1):34-51.
[14] Flexible display market to reach nearly 800 million unit shipments by 2020[EB/OL].[2017-06-05]. https://technology.ihs.com/436047/flexi-ble-display-market-to-reach-nearly-800-million-unit-shipmentsby-2020.
[15] Printed and flexible sensors market trends[EB/OL].[2015-09-30]. http://www.strategyr.com/MarketResearch/Printed_and_Flexible_Sensors_Market_Trends.asp.
[16] Park S K, Jackson T N, Anthony J E, et al. High mobility solution pro-cessed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors[J]. Applied Physics Letters, 2007, 91(6):063514.
[17] Park S K, Mourey D A, Subramanian S, et al. High-mobility spincast organic thin film transistors[J]. Applied Physics Letters, 2008, 93(4):043301.
[18] Izawa T, Miyazaki E, Takimiya K. Molecular ordering of high-perfor-mance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics[J]. Advanced Materials, 2010, 20(18):3388-3392.
[19] Chang J F, Sun B Q, BBreiby D W, et al. Enhanced mobility of poly (3-hexylthiophene) transistors by spin-coating from high-boilingpoint solvents[J]. Chemistry of Materials, 2004, 16(23):4772-4776.
[20] Ong B S, Wu Y, Liu P, et al. High-performance semiconducting poly-thiophenes for organic thin-film transistors[J]. Journal of the Ameri-can Chemical Society, 2004, 126(11):3378-3379.
[21] Zhang X, Bronstein H, Kronemeijer A J, et al. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer[J]. Nature Communications, 2013, 4(7):2238.
[22] Haddon R C, Perel A S, Morris R C, et al. C60 thin film transistors[J]. Applied Physics Letters, 1995, 67(1):121-123.
[23] Zhang F, Di C A, Berdunov N, et al. Ultrathin film organic transistors:precise control of semiconductor thickness via spin-coating[J]. Ad-vanced Materials, 2013, 25(10):1401-1407.
[24] Bucella S G, Luzio A, Gann E, et al. Macroscopic and high-through-put printing of aligned nanostructured polymer semiconductors for MHz large-area electronics[J]. Nature Communications, 2015, 6:8394.
[25] Yuan Y, Giri G, Ayzner A L, et al. Ultra-high mobility transparent or-ganic thin film transistors grown by an off-centre spin-coating method[J]. Nature Communications, 2014, 5(1):3005.
[26] Bittle E G, Basham J I, Jackson T N, et al. Mobility overestimation due to gated contacts in organic field-effect transistors[J]. Nature Com-munications, 2016, 7:10908.
[27] Giri G, Verploegen E, Mannsfeld S C, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain[J]. Na-ture, 2011, 480(7378):504-508.
[28] Li F M, Nathan A, Wu Y, et al. Organic thin-film transistor integra-tion using silicon nitride gate dielectric[J]. Applied Physics Letters, 2007, 90(13):20-26.
[29] Kim S H, Sun H L, Kim Y G, et al. Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-pro-cessed AlOX gate insulator[J]. IEEE Electron Device Letters, 2013, 34(2):307-309.
[30] Veres J, Ogier S D, Leeming S W, et al. Low-k insulators as the choice of dielectrics in organic field-effect transistors[J]. Advanced Functional Materials, 2003, 13(3):199-204.
[31] Huang W, Fan H, Zhuang X, et al. Effect of UV/ozone treatment on polystyrene dielectric and its application on organic field-effect tran-sistors.[J]. Nanoscale Research Letters, 2014, 9(1):479.
[32] Feng L, Tang W, Xu X, et al. Ultralow-voltage solution-processed or-ganic transistors with small gate dielectric capacitance[J]. IEEE Elec-tron Device Letters, 2013, 34(1):129-131.
[33] Chua L L, Zaumseil J, Chang J F, et al. General observation of n-type field-effect behavior in organic semiconductors[J]. Nature, 2005, 434(7030):194-199.
[34] Feng L, Tang W, Zhao J, et al. Unencapsulated air-stable organic field effect transistor by all solution processes for low power vapor sensing[J]. Scientific Reports, 2016, 6:20671.
[35] Tang W, Feng L, Yu P, et al. Highly efficient all-solution-processed low-voltage organic transistor with a micrometer-thick low-k polymer gate dielectric layer[J]. Advanced Electronic Materials, 2016, 2(5):1500454.
[36] Parashkov R, Becker E, Ginev G, et al. All-organic thin-film transis-tors made of poly(3-butylthiophene) semiconducting and various poly-meric insulating layers[J]. Journal of Applied Physics, 2004, 95(3):1594-1596.
[37] Li J, Sun Z, Yan F. Solution processable low-voltage organic thin film transistors with high-k relaxor ferroelectric polymer as gate insulator[J]. Advanced Materials, 2012, 24(1):88-93.
[38] Tang W, Li J, Zhao J, et al. High performance solution-processed lowvoltage polymer thin-film transistors with low-k/high-k bilayer gate dielectric[J] Electron Device Letters IEEE, 2015, 36(9):950-952.
[39] Di C A, Yu G, Liu Y, et al. High-performance low-cost organic fieldeffect transistors with chemically modified bottom electrodes[J]. Jour-nal of the American Chemical Society, 2006, 128(51):16418-16419.
[40] Long D X, Xu Y, Kang S J, et al. Solution processed vanadium pentox-ide as charge injection layer in polymer field-effect transistor with Mo electrodes[J]. Organic Electronics, 2015, 17:66-76.
[41] Hong M P, Kim B S, Lee Y U, et al. Recent progress in large sized & high performance organic TFT array[J]. Sid Symposium Digest of Tech-nical Papers, 2012, 36(1):23-25.
[42] Wen Y, Liu Y, Guo Y, et al. Experimental techniques for the fabrica-tion and characterization of organic thin films for field-effect transis-tors[J]. Chemical Reviews, 2011, 111(5):3358-3406.
[43] Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors[J]. Nature, 2009, 457(7230):679-686.
[44] Feng L, Tang W, Zhao J, et al. All-solution-processed low-voltage or-ganic thin-film transistor inverter on plastic substrate[J]. IEEE Trans-actions on Electron Devices, 2014, 61(4):1175-1180.
[45] Peng B, Chan P K L. Flexible organic transistors on standard printing paper and memory properties induced by floated gate electrode[J]. Or-ganic Electronics, 2014, 15(1):203-210.
[46] Ute Z, Tatsuya Y, Kazuo T, et al. Organic electronics on banknotes.[J]. Advanced Materials, 2011, 23(5):654-658.
[47] Tang W, Feng L, Zhao J, et al. Inkjet printed fine silver electrodes for all-solution-processed low-voltage organic thin film transistors[J]. Journal of Materials Chemistry C, 2014, 2(11):1995-2000.
[48] Tang W, Feng L, Jiang C, et al. Controlling the surface wettability of the polymer dielectric for improved resolution of inkjet-printed elec-trodes and patterned channel regions in low-voltage solution-pro-cessed organic thin film transistors[J]. Journal of Materials Chemistry C, 2014, 2(28):5553-5558.
[49] Kim Y H, Yoo B, Anthony J E, et al. Controlled deposition of a highperformance small-molecule organic single-crystal transistor array by direct ink-jet printing[J]. Advanced Materials, 2012, 24(4):497-502.
[50] Kjellander B K C, Smaal W T T, Anthony J E, et al. Inkjet printing of TIPS-PEN on soluble polymer insulating films:A route to high-perfor-mance thin-film transistors[J]. Advanced Materials, 2010, 22(41):4612-4616.
[51] Chung S, Kim S O, Kwon S K, et al. All-inkjet-printed organic thinfilm transistor inverter on flexible plastic substrate[J]. IEEE Electron Device Letters, 2011, 32(8):1134-1136.
[52] Sowade E, Mitra K Y, Ramon E, et al. Up-scaling of the manufactur-ing of all-inkjet-printed organic thin-film transistors:Device perfor-mance and manufacturing yield of transistor arrays[J]. Organic Elec-tronics, 2016, 30:237-246.
[53] Tseng H Y, Subramanian V. All inkjet-printed, fully self-aligned tran-sistors for low-cost circuit applications[J]. Organic Electronics, 2011, 12(2):249-256.
[54] Medina-Sánchez M, Martínez-Domingo C, Ramon E, et al. An inkjetprinted field-effect transistor for label-free biosensing[J]. Advanced Functional Materials, 2015, 24(40):6291-6302.
[55] Feng L, Jiang C, Ma H, et al. All ink-jet printed low-voltage organic field-effect transistors on flexible substrate[J]. Organic Electronics, 2016, 38:186-192.
[56] Sony develops a "rollable" otft*1-driven oled display that can wrap around a pencil[EB/OL].[2017-06-20]. https://www.sony.net/SonyInfo/News/Press/201005/10-070E/.
[57] Plastic Logic to bring tiled 42" OTFT flexible e-paper displays to the market[EB/OL].[2017-06-20]. https://www.oled-info.com/plastic-log-ic-bring-42-otft-flexible-e-paper-displays-market.
[58] Press release:FlexEnable's new 12.1'' plastic LCD platform delivers large area flexible displays for next generation product designs[EB/OL].[2017-06-20]. http://www.flexenable.com/newsroom/new-plasticlcd-platform-delivers-large-area-flexible-displays/.
文章导航

/